Production of Σ hyperons and search of Σ^0 -hypernuclei at LHC with ALICE

The 6th International Conference on Particle Physics and Astrophysics Moscow, MEPhI, 29.11 – 2.12 2022

Alexander Borissov¹

Moscow Institute of Physics and Technology (MIPT) for the ALICE collaboration

30.11.2022

► Introduction

- ▶ Detection of Σ^0
- $\blacktriangleright\ \Sigma^0$ world data and Σ^0/Λ cross section ratio
- ▶ First observation of Σ^+ , $\overline{\Sigma}^-$ at LHC
- ▶ Search for Σ^0 -hypernuclei
- ► Summary

Σ^0 cross section in pp collisions

Particle	Quarks	Mass	Width	Lifetime	EM decay	Branching
		$({ m MeV}/c^2)$	$({ m MeV}/c^2)$	$({ m fm}/c)$		ratio $(\%)$
Σ^0	uds	1192	~ 0	$22 \ 200$	$\Lambda + \gamma$	100

(PDG collab., "Review of Particle Physics", PTEP, 2022, 083C01, 2022)

- \blacktriangleright No production cross section measurements at energies larger than 91 GeV
- \blacktriangleright Comparison with the Λ baryon, which has the same quark content but different isospin.
- ▶ Discrimination of prompt and secondary hyperons from weak decays.
- Constrain feed-down corrections for protons, pions and direct photons at low transverse momenta.
- ▶ Contribution to the understanding of hadron production mechanisms.
- Reference for tuning Monte Carlo event generators such as PYTHIA, EPOS and DIPSY.
- ▶ Baseline for comparison with Pb–Pb data.

Topology of the detection of $\Sigma^0 \to \Lambda + \gamma$ and $\bar{\Sigma}^0 \to \bar{\Lambda} + \gamma$

The ALICE detector

ITS, TPC and TOF are mainly used for reconstruction and identification of tracks V0A+V0C and ZDC for multiplicity, centrality, trigger and timing. Unique particle identification, high granularity, tracking down to $p_{\rm T} = 0.1~{\rm GeV}/c$. Size 16× 26 meters, weight ~ 10000 tons.

$\Lambda \to p\pi^-$ detection (ALICE collab., Eur. Phys. J. C 81 (2021) 256)

▶ secondary vertex (V^0) with oppositely charged tracks

 \blacktriangleright distance of closest approach (b) between positive track and primary vertex $> 0.06~{\rm cm}$

cos of the angle between V0 momentum and vector connecting primary and secondary vertices > 0.993

Photon detection at ALICE

- \blacktriangleright EMCAL: large acceptance (100°, $|\eta|<0.9)$ but limited energy resolution
- ▶ PHOS: good energy resolution but limited acceptance (60°, $|\eta| < 0.135$)
- ▶ Photon Conversion Method (PCM)
- $\blacktriangleright\,$ good momentum resolution at low $p_{\rm T} \sim 1-5~\%$
- $\blacktriangleright\,$ excellent particle identification capabilities in large $p_{\rm T}$ range 0.1 20 ${\rm GeV}/c$
- ▶ full azimuthal angle coverage $(|\eta| < 0.9)$
- \blacktriangleright conversion probability < 0.085

γ reconstruction with PCM

▶ $e^+(e^-)$ track selection with track $p_{\rm T} > 50 \text{ MeV}/c$

- ▶ γ conversion vertex at distance to primary vertex 5 < R < 180 cm
- ▶ remaining V0 (Λ , K_S^0) removed with further selections: $q_T < 0.05$, corresponding to transverse momentum of e^+ with respect to the γ momentum.
- \implies small background contamination in the photon sample

$$\Sigma^0 \to \Lambda + \gamma \text{ and } \bar{\Sigma}^0 \to \bar{\Lambda} + \gamma$$

- ▶ $\gamma \rightarrow e^+ + e^-$ is detected through the secondary V⁰ vertex with Photon Conversion Method (PCM) in the central barrel detectors
- The distribution of the conversion points is well reproduced by MC. The radiation thickness of the detector material integrated for R < 180 cm and |η| < 0.9 is determined to be 11.4 ±0.5% X₀ (ALICE, Int. J. Mod. Phys. A 29 (2014) 1430044).
 ⇒ Clear Σ⁰ invariant mass peak

 $\blacktriangleright \Sigma^0$ invariant mass is calculated from the four-momenta of the selected Λ and γ candidates.

Note low $E_{\gamma} \approx 100$ MeV.

- $\blacktriangleright~\Sigma^0$ mass resolution $\sigma_M^{PCM} = 2~{\rm MeV}/c^2$ at 2.8 $< p_{\rm T} < 3.4~{\rm GeV}/c$
- Proof-of-principle: Σ⁰ peak is also observed with photon detected in PHOS calorimeter, but with worse mass resolution.

Σ^0 mass and width from PCM

\implies Reconstructed peak position is in good agreement with the PDG value: $M_{PDG}(\Sigma^0)=1192.642\pm0.024~{\rm MeV}/c^2$

 \implies The Σ^0 mass resolution is determined only by the detector resolution due to the short lifetime of the Σ^0 and is in agreement with the simulations

Σ^0 corrections, spectrum and Lévy-Tsallis fit

 γ conversion probability <0.085The $p_{\rm T}$ -integrated yield is determined by summing up the spectrum in the measured range and the extrapolation to $p_{\rm T}=0$ based on the Lévy-Tsallis fit. $\sim 60\%$ of the yield is in the extrapolated region between 0 and 1.1 GeV/c. Relative uncertainty of the yield due to the extrapolation is $\sim 18\%$.

ALICE measurement and world data

First measurement at LHC of $(\Sigma^0 + \overline{\Sigma}^0)/2\Lambda$ cross section ratio complements world data from lower energies

•
$$e^+e^-$$
 data at $\sqrt{s} = 91$ GeV from L3 experiment at LEP reported
 $\left(\Sigma^0 + \bar{\Sigma}^0\right)/2\Lambda = 0.33 \pm 0.03$, where both Σ^0 and Λ detected in hadronic Z decays (M. Acciarri et al, L3 collab., Phys. Lett. B 479 (2000) 79-88.)

$p_{\rm T}$ -differential $\left(\Sigma^0 + \bar{\Sigma}^0\right)/2\Lambda$ ratio

 \implies Increasing trend of the $(\Sigma^0 + \bar{\Sigma}^0)/2\Lambda$ ratio with p_T is an indication of different contributions of primordial and final Σ^0 and Λ production.

 \implies More data are needed! LHC run II data are under analysis,

Σ^0 and Λ vs generators

First observation of $\Sigma^+(\bar{\Sigma}^-) \to p(\bar{p}) + \pi^0(\gamma\gamma)$ at LHC

Two photons were observed using PCM and High Multiplisity Trigger

Clean peak after background subtraction. Further analysis is in progress

Projection for the next LHC data taking period

- Expected higher integrated luminosity: ~ 10 nb⁻¹ (~8x10⁹ collisions at 0-10 % centrality)
- New ITS: less material budget and more precise tracking for the identification of hyper-nuclei

Search for $\frac{3}{\Sigma^0}H$ and $\frac{4}{\Sigma^0}He$ in LHC runs 3&4

Production mechanisms similar to the ones considered for Λ hypernuclei like strangeness exchange (K⁻, π^{\pm}) (T.Nagae et al., Phys. Rev. Lett. 80 (1998) 1605)

Search for

$${}^3_{\Sigma^0}H^3({}^3_{\overline{\Sigma}{}^0}H) \to \Lambda(\overline{\Lambda}) + d$$

and

$${}^3_{\Sigma^0}H({}^3_{\overline{\Sigma}{}^0}H) \to^3_{\Lambda} H({}^3_{\overline{\Lambda}}H) + \gamma$$

on the basis of observed

$${}^3_{\Lambda}H^3({}^3_{\overline{\Lambda}}H) \rightarrow {}^3He({}^{\overline{3}He}) + \pi^{-(+)}$$

(Z.Citron et al. "Future physics opportunities for high-density QCD at the LHC with heavy-ion...", arXiv:1812.06772 [hep-ph], CERN-LPCC-2018-07)

19 / 22

► First measurement of Σ⁰(Σ̄⁰) production cross section in pp collisions at 7 TeV. ⇒ The results can help to constrain production models and contribute to the previously very limited set of world data.

 \Longrightarrow Dedicated paper is under development, analysis of pp data at 13 TeV has started.

- ▶ First observation of Σ^+ , $\overline{\Sigma}^-$ with ALICE at LHC
- > Σ^0 -hypernuclei search is foreseen at LHC with ALICE in Run 3 in 2022–2025 years.

\implies Further investigations are very interesting and needed

Backup. $\Sigma^{\pm}(1385)$ and $\Xi^{0}(1530)$ vs models

- ▶ PYTHIA underpredicts the data
- ▶ PYTHIA 4C with color reconnection gives qualitative agreement in spectral shape
- ▶ HERWIG predicts a much softer production than other models and data.
- ► SHERPA describes the spectral shape, but largely underestimates the yields

22 / 22