

INT- contribution to form factors of $K^+ \rightarrow \mu^+ \nu_{\mu} \gamma$ decay in OKA experiment

Vladimir Kravtsov, INR, Moscow Viktor Kurshetsov, IHEP, Protvino on behalf of OKA collaboration

VI Int. Conference on particle physics and astrophysics 29 November - 2 December 2018, MEPhI, Moscow, Russia

$K \rightarrow \mu \nu_{\mu} \gamma \ decay$

- IB inner bremsstrahlung, where photon is emitted from the charged particle in the initial or final state
- **SD** structure-dependent radiative decay, which involves the emission of a photon from the intermediate states in the transition
- **INT** possible interference of **IB** and **SD**

Differential cross section in K-meson rest frame

$$\begin{aligned} \frac{d\Gamma_{K_{\mu\nu\gamma}}}{dxdy} &= A_{IB}f_{IB}(x,y) \\ &+ A_{SD}[(F_V + F_A)^2 f_{SD^+}(x,y) + (F_V - F_A)^2 f_{SD^-}(x,y)] \\ &- A_{INT}[(F_V + F_A) f_{INT^+}(x,y) + (F_V - F_A) f_{INT^-}(x,y)] \end{aligned}$$
where $x = 2E_{\gamma}/m_K$, $y = 2E_{\mu}/m_K$, c.m.s.

In lower order of $\chi PT \ O(p^4) \ F_V = 0.0945$, $F_A = 0.0425$ and $F_V - F_A = 0.052$

We will measure $F_V - F_A$ difference that connects with INT- and SD-. Best measurement of this difference was made by OKA (Eur. Phys. J. C 79, 635 (2019)) $F_V - F_A = 0.134 \pm 0.021(stat.) \pm 0.027(syst.)$

 $K \rightarrow \mu \nu_{\mu} \gamma$ decay matrix

Main backgrounds

 $K^+ \rightarrow \mu^+ \nu_\mu \pi^0$ (Kµ3) with 1γ lost from $\pi^0 \rightarrow \gamma\gamma$ (Br = 3.353%) $K^+ \rightarrow \pi^+ \pi^0$ (K2 π) with 1γ lost from $\pi^0 \rightarrow \gamma\gamma$ and π misidentification (Br = 20.66%) $K^+ \rightarrow \mu^+ \nu_\mu$ (Kµ2) with 1γ background (Br = 63.55%) $K^+ \rightarrow \pi^+ \pi^- \pi^+$ (K3 π) with 1γ background and π misidentification (Br = 5.58%)

OKA setup

OKA setup includes

Beam spectrometer, Decay volume (DV) with Veto system , Main magnetic spectrometer,
 2 Gamma detectors (GAMS-2000, EGS), Muon identification (hadron calorimeter GDA-100 and MC),
 Matrix Hodoscope (MH).

OKA beam is a RF-separated secondary beam of **70***GeV* Proton Accelerator of IHEP, Protvino. **Beam** has up to **20% of kaons** with momentum **17**. **7***GeV*/*c* during **analyzed Run 14 (November 2012).**

Event selection

GAMS trigger - $beam * \overline{C_1} * C_2 * \overline{BK} * E_{GAMS}$ 1 Kaon beam track 1 secondary Muon 1 shower in GAMS > 1*GeV* Decay vertex inside decay volume DV

Number of events (Run 14, 2012)

No target -261×10^{6} - published in 1989 Target 1,2 - 243 × 10⁶ - added to present analysis

Method of $K \rightarrow \mu \nu_{\mu} \gamma$ decay selection

For correct estimation of statistical error σ_{exp} the errors of M_K histogram fit were used only. ⁶

The cuts on **Y** for signal in 10 **X-stripes**

Simultaneous fit has a good agreement with $1.3 < \chi^2/NDF < 1.7$

 $F_{v} - F_{A}$ calculation

 $p_{signal} = p\mathbf{0} \times (1 + p\mathbf{1} \times f\left(\frac{N_{INT-}}{N_{ID}}\right))$

For each **X-stripe** we have experimental event number N_{Data} from data fitting and **IB** event number N_{IB} from **MC**. Then we plot N_{Data}/N_{IB} as a function of **X**. For **IB** only we would have $N_{Data}/N_{IB} = 1$. For small **X IB** is dominated and I**NT-** is negligible. For large **X** this ratio also contains negative interference term.

We fit N_{Data}/N_{IB} distribution with which follows from the sum of IB and INT-

The total number of selected $K \rightarrow \mu\nu\gamma$ decay events - 144115 \pm 380 Old published OKA result (Eur. Phys. J. C 79, 635 (2019)) - 95428 \pm 309

 $\mathbf{p1} = F_V - F_A$

Systematics

Since analysis can depends on width of X-stripes, Y and angle cuts and fit procedure next possible systematics is considered:

- 1) Non ideal description of signal and background in MC 0.012
- 2) Left and right X limits (number of bins in fit) 0.008
- 3) Width of X-stripes ($\Delta x = 0.035$ and 0.065 instead 0.05) 0.005
- 4) Y limits in X-stripes (FWHM instead full signal region) 0.005
- 5) Possible contribution of INT+ term (E787 result) 0.018

The total systematics from 5 possible sources - 0.024

Detail description of systematics estimation procedure are presented in Backup slides.

$\chi PT O(p^6)$

In the next order $\chi PT \ O(p^6) F_V$ linearly depends on the momentum transfer q^2 with parametrization $F_V = F_V(0)(1 + \lambda(1 - x)), F_A = const$, where $F_V(0) = 0.082, F_A = 0.034, \lambda = 0.4$.

The theoretical prediction was tested in three ways:

- 1) $F_V(0)$, F_A , λ were fixed from the theory prediction: $F_V(0) = 0.082$, $F_A = 0.034$, $\lambda = 0.4$. This fit has bad compliance with $\chi^2/NDF = 29.0/9$.
- 2) $F_V(0)$ and F_A are taken from $\chi PT O(p^6)$, λ is a fit parameter.
 - It gives $\lambda = 2.23 \pm 0.44$ with $\chi^2/NDF = 11.8/8$. This result is 4.2σ above theory.
- 3) $F_V(0)$ was fixed from $\chi PT O(p^6)$. F_A and λ are the fit parameters.
 - Fig. shows the $F_A \lambda$ correlation. Theoretical prediction (red star) is out of 3σ -ellipse.

The next order of chiral theory has worse agreement although can not be excluded.

Conclusion

- 1) Largest statistics about 144K events of $K \rightarrow \mu \nu_{\mu} \gamma$ decay has been collected.
- 2) $F_V F_A$ difference has been measured with highest accuracy:

 $F_V - F_A = 0.135 \pm 0.017(stat.) \pm 0.024(syst.)$

- 3) The result is **2.9** σ above χ PT O(p4) prediction or **1.9** σ above the calculation in framework of gauged nonlocal effective chiral action (E χ A) ($F_V - F_A = 0.081$ (S. Shim et al., Phys. Lett. B 795 (2019) 438).
- 4) The result is very close to the last published result of **OKA** experiment:

 $F_V - F_A = 0.134 \pm 0.021(stat.) \pm 0.027(syst.)$

but both measured errors are smaller than OLD result of OKA.

- 5) The next order of chiral theory has worse agreement although can not be excluded.
- 6) The presented results are preliminary.

Backup slides

1) Non ideal description of signal and background in **MC**

For estimation of systematic error from possible non ideal description of signal and background in **MC**, the error of each bin was scaled by $\sqrt{\chi^2/NDF}$ factor. χ^2 is obtained from simultaneous fit in each **X**-stripe.

New value of $F_V - F_A$ is consistent with the main one but the fit error is larger. We suppose σ_{form} depends as $\sigma^2_{fit} = \sigma^2_{form} + \sigma^2_{stat}$ and therefore

$$\sigma_{stat} = 0.0202 \longrightarrow \sigma_{form} = 0.0117$$

2) Left and right X limits

Dependency N_{Data}/N_{IB} on X was fitted by removing 1 or 2 points at the left (right) edge.

The average difference between the new $F_V - F_A$ values and the nominal one is taken as systematic error.

 $\sigma_X = 0.008$

3) Width of *X*-stripes

We repeated the data analysis procedure for 2 other values of **X**-binning:

- $\Delta X = 0.035$, that is the worst X-resolution at maximal value of X = 0.6;
- $-\Delta X = 0.07 = main + 0.015$ value.

The biggest difference between new $F_V - F_A$ values and the nominal one: $\sigma_{\Delta X} = 0.005$

4) **Y limits** in X-stripes

FWHM cuts for selection of events were applied in **Y**-dependency for signal **MC**. Such cuts on **Y** are stronger than those used for main data analysis.

5) Possible contribution of *INT*+ term

 $\boldsymbol{p_{signal}} = \boldsymbol{p0} \times (1 + (\boldsymbol{F_V} + \boldsymbol{F_A}) \times f\left(\frac{N_{INT+}}{N_{IB}}\right) + (\boldsymbol{F_V} - \boldsymbol{F_A}) \times f\left(\frac{N_{INT-}}{N_{IB}}\right))$

Minimum of INT+ term

Maximum of INT+ term

 $F_V + F_A$ value was measured by **E787** experiment (Phys. Rev. Lett. 85 (2000) 2256).

 $|F_V + F_A| = 0.165 \pm 0.013$

2 fits were repeated with minimal and maximal value of this measured sum.

 $\sigma_{INT+} = 0.018$