INT= contribution to form factors of $K^{K^{\star t}} \Rightarrow \mu^{4} v_{\mu} Y$ decay in OKA experiment

Vladimir Kravtsov, INR, Moscow
Viktor Kurshetsov, IHEP, Protvino
on behalf of OKA collaboration

VI Int. Conference on particle physics and astrophysics 29 November-2 December 2018, MEPhI, Moscow, Russia

$$
K \rightarrow \mu v_{\mu} \gamma \text { decay }
$$

IB - inner bremsstrahlung, where photon is emitted from the charged particle in the initial or final state
SD - structure-dependent radiative decay, which involves the emission of a photon from the intermediate states in the transition
INT - possible interference of IB and SD

Differential cross section in K-meson rest frame

$$
\begin{aligned}
\frac{d \Gamma_{K_{\mu \nu \gamma}}}{d x d y} & =A_{I B} f_{I B}(x, y) \\
& +A_{S D}\left[\left(F_{V}+F_{A}\right)^{2} f_{S D^{+}}(x, y)+\left(F_{V}-F_{A}\right)^{2} f_{S D^{-}}(x, y)\right] \\
& -A_{I N T}\left[\left(F_{V}+F_{A}\right) f_{I N T^{+}}(x, y)+\left(F_{V}-F_{A}\right) f_{I N T^{-}}(x, y)\right. \\
\text { where } \boldsymbol{x} & =\mathbf{2} \boldsymbol{E}_{\gamma} / \boldsymbol{m}_{\boldsymbol{K}}, \boldsymbol{y}=\mathbf{2} E_{\mu} / \boldsymbol{m}_{\boldsymbol{K}}, \text { c.m.s. }
\end{aligned}
$$

In lower order of $\chi P T O\left(p^{4}\right) F_{V}=0.0945, F_{A}=0.0425$ and $F_{V}-F_{A}=0.052$
We will measure $F_{V}-F_{A}$ difference that connects with INT- and SD-.
Best measurement of this difference was made by OKA (Eur. Phys. J. C 79, 635 (2019))

$$
F_{V}-F_{A}=0.134 \pm 0.021(\text { stat. }) \pm 0.027(\text { syst. })
$$

$$
K \rightarrow \mu \nu_{\mu} \gamma \text { decay matrix }
$$

Contribution of SD- to $F_{V}-F_{A}$ is ~ 20 times lower

Main backgrounds

$$
\begin{aligned}
& K^{+} \rightarrow \mu^{+} v_{\mu} \pi^{0}(\mathbf{K} \boldsymbol{\mu} \mathbf{3}) \text { with } 1 \gamma \text { lost from } \pi^{0} \rightarrow \gamma \gamma(\mathrm{Br}=3.353 \%) \\
& K^{+} \rightarrow \pi^{+} \pi^{0}(\mathbf{K} 2 \pi) \text { with } 1 \gamma \text { lost from } \pi^{0} \rightarrow \gamma \gamma \text { and } \pi \text { misidentification }(\mathrm{Br}=20.66 \%) \\
& K^{+} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{v}_{\mu}(\mathbf{K} \boldsymbol{\mu} \mathbf{2}) \text { with } 1 \gamma \text { background }(\mathrm{Br}=63.55 \%) \\
& \mathbf{K}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}(\mathbf{K} 3 \boldsymbol{\pi}) \text { with } 1 \gamma \text { background and } \pi \text { misidentification }(\mathrm{Br}=5.58 \%)
\end{aligned}
$$

OKA setup includes
Beam spectrometer, Decay volume (DV) with Veto system , Main magnetic spectrometer, 2 Gamma detectors (GAMS-2000, EGS), Muon identification (hadron calorimeter GDA-100 and MC), Matrix Hodoscope (MH).

OKA beam is a RF-separated secondary beam of 70 GeV Proton Accelerator of IHEP, Protvino. Beam has up to 20\% of kaons with momentum 17. $\mathbf{7}$ GeV/c during analyzed Run 14 (November 2012).

Event selection

GAMS trigger - beam $* \overline{C_{1}} * C_{2} * \overline{B K} * E_{G A M S}$ 1 Kaon beam track 1 secondary Muon
1 shower in GAMS > $\mathbf{1 G e V}$
Decay vertex inside decay volume DV

Number of events (Run 14, 2012)
No target - 261×10^{6} - published in 1989
Target 1,2-243 $\times 10^{6}$ - added to present analysis

Method of $K \rightarrow \mu v_{\mu} \gamma$ decay selection

Lab system

$$
M_{K}^{2}=\left(P_{\mu}+P_{v}+P_{\gamma}\right)^{2}
$$

$P_{\mu}, P_{v}, P_{\gamma}$ - 4-momentum of decay particles

$$
\overrightarrow{p_{v}}=\overrightarrow{p_{K}}-\overrightarrow{p_{\mu}}-\overrightarrow{p_{\gamma}}, E_{v}=\left|\overrightarrow{p_{v}}\right|
$$

Method was proposed by ISTRA+

5. For the first iteration IB term was used only (Green color).
6. Simultaneous fit of all 3 histograms with MINUIT.

For correct estimation of statistical error $\sigma_{\exp }$ the errors of M_{K} histogram fit were used only.

The cuts on Y for signal in $10 X$-stripes

Simultaneous fit has a good agreement with $1.3<\chi^{2} / N D F<1.7$

$$
\boldsymbol{F}_{v}-\boldsymbol{F}_{A} \text { calculation }
$$

For each X-stripe we have experimental event number $N_{\text {Data }}$ from data fitting and IB event number $N_{I B}$ from MC. Then we plot $N_{\text {Data }} / N_{I B}$ as a function of \mathbf{X}. For IB only we would have $N_{\text {Data }} / N_{I B}=1$. For small X IB is dominated and INT- is negligible. For large \mathbf{X} this ratio also contains negative interference term.

We fit $N_{\text {Data }} / N_{I B}$ distribution with which follows from the sum of IB and INT-

$$
\boldsymbol{p}_{\text {signal }}=p 0 \times\left(1+p 1 \times f\left(\frac{N_{I N T-}}{N_{I B}}\right)\right) \quad p 1=F_{V}-F_{A}
$$

The total number of selected $K \rightarrow \mu \nu \gamma$ decay events -144115 ± 380 Old published OKA result (Eur. Phys. J. C 79, 635 (2019)) - 95428 ± 309

Systematics

Since analysis can depends on width of X -stripes, Y and angle cuts and fit procedure next possible systematics is considered:

1) Non ideal description of signal and background in MC - 0.012
2) Left and right X limits (number of bins in fit) -0.008
3) Width of X-stripes $(\Delta \boldsymbol{x}=0.035$ and 0.065 instead 0.05$)-\mathbf{0 . 0 0 5}$
4) Y limits in X-stripes (FWHM instead full signal region) - $\mathbf{0 . 0 0 5}$
5) Possible contribution of INT+ term (E787 result) $-\mathbf{0 . 0 1 8}$

The total systematics from 5 possible sources - 0.024

Detail description of systematics estimation procedure are presented in Backup slides.

$$
\chi P T O\left(p^{6}\right)
$$

In the next order χ PT $\boldsymbol{O}\left(\boldsymbol{p}^{6}\right) \boldsymbol{F}_{\boldsymbol{V}}$ linearly depends on the momentum transfer $\boldsymbol{q}^{\mathbf{2}}$ with parametrization $F_{V}=F_{V}(\mathbf{0})(\mathbf{1}+\lambda(1-x)), F_{A}=$ const, where $\boldsymbol{F}_{V}(0)=0.082, F_{A}=0.034, \lambda=0.4$.

The theoretical prediction was tested in three ways:

1) $F_{V}(0), F_{A}, \lambda$ were fixed from the theory prediction: $F_{V}(0)=0.082, F_{A}=0.034, \lambda=0.4$. This fit has bad compliance with $\chi^{2} / N D F=29.0 / 9$.
2) $F_{V}(0)$ and F_{A} are taken from $\chi P T O\left(p^{6}\right), \lambda$ is a fit parameter.

It gives $\lambda=2.23 \pm 0.44$ with $\chi^{2} / N D F=11.8 / 8$. This result is 4.2σ above theory.
3) $\boldsymbol{F}_{V}(0)$ was fixed from χ PT $\boldsymbol{O}\left(\boldsymbol{p}^{6}\right) . \boldsymbol{F}_{A}$ and λ are the fit parameters.

Fig. shows the $F_{A}-\lambda$ correlation. Theoretical prediction (red star) is out of 3σ-ellipse.

The next order of chiral theory has worse agreement although can not be excluded.

Conclusion

1) Largest statistics about 144 K events of $K \rightarrow \mu \nu_{\mu} \gamma$ decay has been collected.
2) $\boldsymbol{F}_{V}-F_{A}$ difference has been measured with highest accuracy: $F_{V}-F_{A}=0.135 \pm 0.017$ (stat.) ± 0.024 (syst.)
3) The result is $\mathbf{2 . 9 \sigma}$ above $\chi \mathrm{PT} \mathrm{O}(\mathrm{p} 4)$ prediction or $\mathbf{1 . 9 \sigma}$ above the calculation in framework of gauged nonlocal effective chiral action (EXA) ($F_{V}-F_{A}=0.081$ (S. Shim et al., Phys. Lett. B 795 (2019) 438).
4) The result is very close to the last published result of OKA experiment:
$F_{V}-F_{A}=0.134 \pm 0.021$ (stat.) ± 0.027 (syst.)
but both measured errors are smaller than OLD result of OKA.
5) The next order of chiral theory has worse agreement although can not be excluded.
6) The presented results are preliminary.

Backup slides

For estimation of systematic error from possible non ideal description of signal and background in MC, the error of each bin was scaled by $\sqrt{\chi^{2} / N D F}$ factor. χ^{2} is obtained from simultaneous fit in each \mathbf{X}-stripe.

Main fit
$\chi^{2} / N D F=1.30$

Present fit
$\chi^{2} / N D F=0.78$

New value of $F_{V}-F_{A}$ is consistent with the main one but the fit error is larger.
We suppose $\sigma_{\text {form }}$ depends as $\boldsymbol{\sigma}^{2}{ }_{\text {fit }}=\boldsymbol{\sigma}_{\text {form }}^{2}+\boldsymbol{\sigma}^{2}{ }_{\text {stat }}$ and therefore

$$
\sigma_{\text {stat }}=0.0202 \longrightarrow \sigma_{\text {form }}=0.0117
$$

2) Left and right X limits

Dependency $N_{\text {Data }} / N_{I B}$ on \mathbf{X} was fitted by removing 1 or 2 points at the left (right) edge. The average difference between the new $F_{V}-F_{A}$ values and the nominal one is taken as systematic error.

$$
\sigma_{X}=0.008
$$

3) Width of X-stripes

We repeated the data analysis procedure for 2 other values of \mathbf{X}-binning:

- $\boldsymbol{\Delta X}=\mathbf{0 . 0 3 5}$, that is the worst \mathbf{X}-resolution at maximal value of $\mathbf{X}=\mathbf{0 . 6}$;
$-\Delta X=0.07=$ main +0.015 value .
The biggest difference between new $F_{V}-F_{A}$ values and the nominal one:

$$
\sigma_{\Delta X}=0.005
$$

4) Y limits in X-stripes

FWHM cuts for selection of events were applied in Y-dependency for signal MC. Such cuts on \mathbf{Y} are stronger than those used for main data analysis.

Biggest difference between new $F_{V}-F_{A}$ and nominal values:

$$
\sigma_{Y}=0.005
$$

5) Possible contribution of INT+ term

$$
\boldsymbol{p}_{\text {signal }}=p 0 \times\left(1+\left(F_{V}+F_{A}\right) \times f\left(\frac{N_{I N T+}}{N_{I B}}\right)+\left(F_{V}-F_{A}\right) \times f\left(\frac{N_{I N T-}}{N_{I B}}\right)\right)
$$

Minimum of INT+ term

NO of INT+ term

Maximum of INT+ term

$\boldsymbol{F}_{\boldsymbol{V}}+\boldsymbol{F}_{\boldsymbol{A}}$ value was measured by E787 experiment (Phys. Rev. Lett. 85 (2000) 2256).

$$
\left|F_{V}+F_{A}\right|=0.165 \pm 0.013
$$

2 fits were repeated with minimal and maximal value of this measured sum.

$$
\sigma_{I N T+}=0.018
$$

