Measurements of Higgs boson production through vector boson fusion in the H→WW*→evµv final state at √s = 13 TeV with the ATLAS detector

ICPPA 2022 Conference (Moscow, Russia, 29.11-2.12.2022)

Ekaterina Ramakoti (on behalf of ATLAS Collaboration) NRC Kurchatov Institute

arXiv:2207.00338

(all plots and tables are taken from this reference unless stated otherwise)

$H \rightarrow WW^* \rightarrow ev\mu v$

The Higgs boson decay channel:

 $\begin{array}{ccc} H \rightarrow WW^* \rightarrow ev\mu v \\ 21.6\% & 0.5\% \end{array}$

m_H = 125.09 GeV

VBF is the only process considered as signal in the analysis.

Background processes (slide 12):

- others H-boson
- top quark production (*tW* and $t\bar{t}$)
- non-resonant WW
- dibosons (WZ, ZZ, Wy, Wy* and Zy)
- Drell-Yan $(Z+jets \text{ or } Z/\gamma^* \rightarrow \tau \tau)$
- Mis-Id (*W*+*jets*) and multi-jets (QCD) jets misidentified as *l*

- clear signature
- two isolated leptons
- sizeable missing E_T
- only m_T reconstruction
- two highly energetic forward jets

source

Event selection

Signal Region

Control Region

Category	$N_{ m jet,(p_T>30~GeV)} \ge 2~ m VBF$	CR	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} \ge 2 \text{ VBF}$
	Two isolated, different-flavor leptons $(\ell = e, \mu)$ with opposite charge		$N_{b\text{-jet},(p_{\mathrm{T}}>20~\mathrm{GeV})}=1$
Preselection	$p_{\rm T}^{\rm lead}>22~{\rm GeV}$, $p_{\rm T}^{\rm sublead}>15~{\rm GeV}$	$+\overline{+}/W/+$	$m_{\tau\tau} < m_Z - 25 {\rm GeV}$
	$m_{\ell\ell} > 10 { m ~GeV}$		central jet veto
Background rejection	$N_{b\text{-jet},(p_{\rm T}>20~{\rm GeV})} = 0$		outside lepton veto
	$m_{\tau\tau} < m_Z - 25 \text{ GeV}$		$N_{b\text{-jet},(p_{\mathrm{T}}>20 \text{ GeV})} = 0$
$H \rightarrow W/W^* \rightarrow ouuu$	central jet veto		$m_{\ell\ell} < 70 { m ~GeV}$
$ \begin{array}{c} H \rightarrow VV W \rightarrow e\nu\mu\nu \\ \text{topology} \end{array} $	outside lepton veto	Z/γ^*	$ m_{\tau\tau} - m_Z \le 25 \text{ GeV}$
	$m_{jj} > 120 \text{ GeV}$		central jet veto
Discriminating fit variable	DNN		outside lepton veto

DNN (Deep Neural Network) is applied in the SR that uses 15 dicriminant variables: $\Delta \varphi_{\ell\ell}$, $m_{\ell\ell}$, m_{τ} , Δy_{jj} , m_{jj} , p_{τ}^{tot} , $\Sigma_{\ell}C_{\ell}$, $m_{\ell 1 j1}$, $m_{\ell 1 j2}$, $m_{\ell 2 j1}$, $m_{\ell 2 j2}$, p_{τ}^{jet1} , p_{τ}^{jet2} , p_{τ}^{jet3} and E_{τ}^{miss} significance

Distributions of m_{jj} and Δy_{jj} in the SR

 m_{jj} and Δy_{jj} provide best discrimination between signal and background

CRs for the most interesting bkgs

WW CR has no high purity due to the overwhelming background from top quark processes.

Post-fit yields and distribution in SRs

E.Ramakoti, ICPPA 2022

(Reduced) STXS categorization

Each SR and corresponding CR are further divided which provides independent XS measurements in different sub-regions

STXS - simplified template cross sections

 p_{T}^{H} is defined at the reconstruction level as the transverse momentum of Higgs boson candidate

Measured VBF cross-sections, total and STXS

compared to the SM predicted value of 0.81 ± 0.02 pb

Breakdown of the main contributions to the total uncertainty

Source	$\frac{\Delta \sigma_{\mathrm{VBF}} \cdot \mathcal{B}_{H \to WW^*}}{\sigma_{\mathrm{VBF}} \cdot \mathcal{B}_{H \to WW^*}} \ [\%]$	Source	$\frac{\Delta \sigma_{\mathrm{VBF}} \cdot \mathcal{B}_{H \to WW^*}}{\sigma_{\mathrm{VBF}} \cdot \mathcal{B}_{H \to WW^*}} \left[\%\right]$
Data statistical uncertainties	15	Theoretical uncertainties	16
Total systematic uncertainties	18	ggF	4.6
MC statistical uncertainties	4.9	VBF	12
Experimental uncertainties	6.7	WW	5.5
Flavor tagging	1.0	Тор	6.4
Jet energy scale	3.7	$Z\tau\tau$	1.0
Jet energy resolution	2.1	Other VV	1.5
$E_{ m T}^{ m miss}$	4.9	Other Higgs	0.4
Muons	0.8	Background normalizations	4.9
Electrons	0.4	WW	0.6
Fake factors	0.8	Тор	3.4
Pileup	1.3	$Z\tau\tau$	3.4
Luminosity	2.2	Total	23

ATLAS and CMS results for VBF $H \rightarrow WW^*$

- CMS 25 fb⁻¹ (7+8 TeV), link JHEP01 (2014) 096
- ATLAS 25 fb⁻¹ (7+8 TeV), link Phys. Rev. D 92, 012006 (2015)
- ATLAS 36 fb⁻¹, link
 Phys. Lett. B 789 (2019) 508
- CMS 138 fb⁻¹, link JHEP03(2021)003
- ATLAS 139 fb⁻¹, link arXiv:2207.00338v1 (2022)

Signal strength is measured with \sim 25% precision in ATLAS

$$\mu_{VBF} = 0.62^{+0.58}_{-0.47}$$

$$\mu_{VBF} = 1.27^{+0.53}_{-0.45}$$

$$\mu_{VBF} = 0.62^{+0.36}_{-0.35}$$

$$\mu_{VBF} = 0.71^{+0.28}_{-0.25}$$

$$\mu_{VBF} = 0.93^{+0.23}_{-0.20}$$

Others main background processes

Overview of simulation tools used to generate processes

Process	Matrix element	PDF set	UEPS model	Prediction order
	(alternative)		(alternative model)	for total cross section
ggF H	Роwнед Box v2 [23–27] NNLOPS [26, 30, 43]	PDF4LHC15nnlo [57]	Рутніа 8 [28]	N ³ LO QCD + NLO EW [11, 33–42]
	(MG5_AMC@NLO) [49, 86]		(Herwig 7) [48]	
VBF H	Powheg Box v2 [23–25, 43]	PDF4LHC15nlo	Рутніа 8	NNLO QCD + NLO EW [44–46]
	(MG5_AMC@NLO)		(Herwig 7)	
$VH \text{ excl. } gg \rightarrow ZH$	Powheg Box v2	PDF4LHC15nlo	Рутніа 8	NNLO QCD + NLO EW [52–56]
tĪH	Powheg Box v2	NNPDF3.0nlo	Рутніа 8	NLO [11]
$gg \rightarrow ZH$	Powheg Box v2	PDF4LHC15nlo	Рутніа 8	NNLO QCD + NLO EW [90, 91]
$qq \rightarrow WW$	Sherpa 2.2.2 [69]	NNPDF3.0nnlo [50]	Sherpa 2.2.2 [70, 71, 73–76]	NLO [77, 78, 92]
	$(Q_{\rm cut})$		(Sherpa 2.2.2 [71, 72]; μ_q)	
$qq \rightarrow WWqq$	MG5_AMC@NLO [49]	NNPDF3.0nlo	Рутніа 8	LO
			(Herwig 7)	
$gg \rightarrow WW/ZZ$	Sherpa 2.2.2	NNPDF3.0nnlo	Sherpa 2.2.2	NLO [93]
$WZ/V\gamma^*/ZZ$	Sherpa 2.2.2	NNPDF3.0nnlo	Sherpa 2.2.2	NLO [94]
$V\gamma$	Sherpa 2.2.8 [69]	NNPDF3.0nnlo	Sherpa 2.2.8	NLO [94]
VVV	Sherpa 2.2.2	NNPDF3.0nnlo	Sherpa 2.2.2	NLO
$t\bar{t}$	Powneg Box v2	NNPDF3.0nlo	Рутніа 8	NNLO+NNLL [95–101]
	(MG5_AMC@NLO)		(Herwig 7)	
Wt	Powheg Box v2	NNPDF3.0nlo	Ρυτηία 8	NNLO [102, 103]
	(MG5_AMC@NLO)		(Herwig 7)	
Z/γ^*	Sherpa 2.2.1	NNPDF3.0nnlo	Sherpa 2.2.1	NNLO [79]
	(MG5_AMC@NLO)			

Best-fit values and uncertainties for $\sigma_i \cdot B_{H \rightarrow WW^*}$

STXS hip $(\sigma : \mathcal{B}_{H_{out}})$	Value	Uncertainty [fb]					SM prediction
$\mathcal{D}_{H} \to \mathcal{D}_{H} \to \mathcal{D}_{H} \to \mathcal{W} \mathcal{W}^{*} \mathcal{D}_{H}$	[fb]	Total	Stat.	Exp. Syst.	Sig. Theo.	Bkg. Theo.	[fb]
EW qqH -2 j , low m_{jj} -low p_T^H 350 $\leq m_{jj} <$ 700 GeV, $p_T^H <$ 200 GeV	6	+63 -62	+46 -42	+31 -34	+11 -14	+24 -26	109 ± 7
EW qqH -2 j , med m_{jj} -low p_T^H 700 $\leq m_{jj} <$ 1000 GeV, $p_T^H <$ 200 GeV	31	+35 -33	+30 -27	+15 -14	+8 -7	+11 -10	56 ± 4
EW qqH -2 j , high m_{jj} -low p_T^H 1000 $\leq m_{jj} < 1500$ GeV, $p_T^H < 200$ GeV	60	+26 -23	+23 -21	+7 -7	+9 -5	+5 -5	51 ± 4
EW qqH -2 j , very high m_{jj} -low p_T^H $m_{jj} \ge 1500 \text{ GeV}, p_T^H < 200 \text{ GeV}$	57	+20 -18	+18 -17	+5 -5	+3 -3	+4 -4	50 ± 4
EW qqH -2 j , high p_{T}^{H} $m_{jj} \ge 350 \text{ GeV}, p_{T}^{H} \ge 200 \text{ GeV}$	37	+16 -14	+14 -13	+4 -3	+4 -3	+3 -3	32 ± 1

5 STXS bins for VBF

Correlations between the cross-section measurements

5 STXS bins for VBF

STXS Composition

Reconstructed Signal Region

Expected Composition

MT2 definition

$$m_{T2}^{2} = \min_{\not p_{1} + \not p_{2} = \not p_{T}} \left[\max\{m_{T}^{2}(p_{T}^{a}, \not p_{1}), m_{T}^{2}(p_{T}^{b}, \not p_{2})\} \right]$$

where the minimization is over all possible twomomenta, $\bar{p}_{1,2}$, such that their sum gives the observed missing transverse momentum \bar{p}_{T} , and where each of $p_{T}{}^{a}$ and $p_{T}{}^{b}$ is the combined transverse momentum of a charged lepton and a jet.

- $m_{T_2}^2 \le m_W^2$ (decay of a pair of W each with a single invisible particle)
- $m_T^2 \le m_W^2$ (decay with single invisible particle)

Post-fit yields for ggf in SRs

Process	$N_{\rm jet} = 0 \ \rm ggF$	$N_{\rm jet} = 1 \rm ggF$	$N_{\rm jet} \ge 2 \ \rm ggF$
$H_{ m ggF}$	2100 ± 220	1100 ± 130	440 ± 90
$H_{\rm VBF}$	23 ± 9	103 ± 30	46 ± 12
Other Higgs	40 ± 20	55 ± 28	55 ± 27
WW	9700 ± 350	3500 ± 410	1500 ± 470
$t\bar{t}/Wt$	2200 ± 210	5300 ± 340	6100 ± 500
Z/γ^*	140 ± 50	280 ± 40	930 ± 70
Other VV	1400 ± 130	840 ± 100	470 ± 90
Mis-Id	1200 ± 130	720 ± 90	470 ± 50
Total	16770 ± 130	11940 ± 110	10030 ± 100
Observed	16726	11917	9 982

Measured ggF cross-sections, total and STXS

 $= 12.0 \pm 0.6 \text{ (stat.)}_{-0.8}^{+0.9} \text{ (exp. syst.)}_{-0.5}^{+0.6} \text{ (sig. theo.)} \pm 0.8 \text{ (bkg. theo.) pb}$

compared to the SM predicted values of 10.4 ± 0.5 pb

ATLAS and CMS results for ggF $H \rightarrow WW^*$

- ATLAS Run1 PRD 92 (2015) 012006
- ATLAS Run2 36 fb⁻¹ Phys. Lett. B 789 (2019) 508
- ATLAS Run2 139 fb⁻¹ Current Factor of 1.5 improvement
- CMS Run1 JHEP01 (2014) 096
- CMS 138 fb⁻¹ arXiv:2206.09466 same-flavour channel included

- $\mu_{ggF} = 1.02^{+0.29}_{-0.26}$
- $\mu_{ggF} = 1.10^{+0.21}_{-0.20}$
- $\mu_{ggF} = 1.15^{+0.14}_{-0.13}$

 $\mu_{ggF} = 0.76 \pm 0.21$

 $\mu_{ggF} = 0.92^{+0.11}_{-0.10}$

• Signal strength is measured with ~12% precision in both experiments