Measurements of gluon fusion production of the Higgs boson in $H \rightarrow WW^* \rightarrow ev\mu v$ decays in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

Alexander Gavrilyuk (on behalf of ATLAS Collaboration) NRC Kurchatov Institute

ICPPA 2022 Conference (Moscow, Russia, 29.11-02.12.2022)

arXiv:2207.00338v1

$H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$

 $H \rightarrow WW^*$ channel has a large branching ratio ($\mathscr{B} \approx 21.6\%$) and a clear signature — two isolated leptons, sizeable missing E_T , only m_T reconstruction is possible. $ev\mu v$ final state (0.5% cases from total H BR) is preferred due to absence of DY background $Z \rightarrow ee/\mu\mu$, only $Z \rightarrow \tau \tau \rightarrow e\mu + X$

Production cross sections and branching ratios for Higgs boson

30.11.2022

30.11.2022

Main background processes

30.11.2022

Jet multiplicity

- Several signal regions defined in accordance with number of jets present in event
- N_{jets}: 0, 1, 2+
- 2+ is split between ggF and VBF production modes
- Data are well described by MC simulations
- all plots and tables are taken from the reference given on the front page unless stated otherwise

Event selection

30.11.2022

Category	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 0 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 1 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} \geq 2 \text{ ggF}$	
	Two isolated, differen	Anti-CJV		
Preselection	$p_{ m T}^{ m lead}$	(Central Jet		
1 rescreetion	m	Veto) and Anti-		
		$N_{b ext{-jet},(p_{\mathrm{T}}>20~\mathrm{GeV})}=0$		OLV (Outside
Background rejection	$\Delta \phi_{\ell\ell, E_{\rm T}^{\rm miss}} > \pi/2$	$m_{\tau\tau} < m_Z - 25 \text{ GeV}$		provide
	$p_{\rm T}^{\ell\ell} > 30~{\rm GeV}$	$\max\left(m_{\rm T}^\ell\right) > 50 {\rm GeV}$		orthogonality
	$m_{\ell\ell} < 55 \text{ GeV}, \ \Delta \phi_{\ell\ell} < 1.8$			with VBF
$H \rightarrow WW^* \rightarrow e\nu\mu\nu$ topology			fail central jet veto OR	selection (see
			fail outside lepton veto	Ramakoli S lalk)
			$ m_{jj} - 85 > 15 \text{ GeV}$	
			OR $\Delta y_{jj} > 1.2$	
Discriminating fit variable		$m_{ m T}$		

Control Regions for the most interesting background, 0/1 jet

*m*_τ [GeV]

Data are well described by MC simulations

2 jet $Z \rightarrow \tau \tau$ Control Region and SR selection

Post-fit yields in SRs

Process	$N_{\rm jet} = 0 \ \rm ggF$	$N_{\rm jet} = 1 \rm ggF$	$N_{\rm jet} \ge 2 \ \rm ggF$
$H_{ m ggF}$	2100 ± 220	1100 ± 130	440 ± 90
$H_{\rm VBF}$	23 ± 9	103 ± 30	46 ± 12
Other Higgs	40 ± 20	55 ± 28	55 ± 27
WW	9700 ± 350	3500 ± 410	1500 ± 470
$t\bar{t}/Wt$	2200 ± 210	5300 ± 340	6100 ± 500
Z/γ^*	140 ± 50	280 ± 40	930 ± 70
Other VV	1400 ± 130	840 ± 100	470 ± 90
Mis-Id	1200 ± 130	720 ± 90	470 ± 50
Total	16770 ± 130	11940 ± 110	10030 ± 100
Observed	16726	11917	9 982

ggF 0Jet, 1 Jet Signal Regions: m_T distributions

Clear signal is seen after background subrtraction. The maximum is wide due to moderate m_T-resolution mostly due to rather poor E_T^{miss} resolution.

30.11.2022

ggF 2Jets Signal Region, Total ggF: m_T distributions

Clear signal is seen after background subrtraction. The maximum is wide due to moderate m_{T} -resolution mostly due to rather poor E^{miss} resolution.

30.11.2022

(Reduced) STXS Stage 1.2 (Simplified Template Cross Sections)

30.11.2022

Measured ggF cross-sections, total and STXS

 $\sigma_{ggF} \cdot \mathcal{B}_{H \to WW^*} = 12.0 \pm 1.4 \text{ pb}$ = 12.0 \pm 0.6 (stat.)^{+0.9}_{-0.8} (exp. syst.) ^{+0.6}_{-0.5} (sig. theo.) \pm 0.8 (bkg. theo.) pb

compared to the SM predicted values of 10.4 ± 0.5 pb

30.11.2022

ATLAS and CMS results for ggF $H \rightarrow WW^*$

- ATLAS Run1 PRD 92 (2015) 012006
- ATLAS Run2 36 fb⁻¹ Phys. Lett. B 789 (2019) 508
- ATLAS Run2 139 fb⁻¹ Current Factor of 1.5 improvement
- CMS Run1 JHEP01 (2014) 096
- CMS 138 fb⁻¹ arXiv:2206.09466 same-flavour channel included

30.11.2022

 $\mu_{qqF} = 1.10^{+0.21}_{-0.20}$

 $\mu_{ggF} = 1.02^{+0.29}_{-0.26}$

$$\mu_{ggF} = 1.15^{+0.14}_{-0.13}$$

 $\mu_{qqF} = 0.76 \pm 0.21$

 $\mu_{ggF} = 0.92^{+0.11}_{-0.10}$

Signal strength is measured with ~12% precision in both experiments

Conclusion

The H→WW*→evµv decay channel was used to measure Higgs boson production by gluon–gluon fusion.

- The ggF cross section times the H→WW* branching ratio is measured to be
 12.0 ± 1.4 pb, in agreement with the Standard Model prediction of 10.4 ± 0.6 pb.
- 2) This measurement is significantly more precise than the previous results from ATLAS because of several improvements to the analysis in addition to the larger dataset, most notably the inclusion of a dedicated ggF ≥2jets signal region.
- 3) Higgs boson production in the H→ WW* decay channel is further characterized through STXS measurements in a total of 6 categories.
- 4) The STXS results are compatible with the Standard Model predictions.

30.11.2022

16

Event selections for Control Regions

CR	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 0 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 1 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} \geq 2 \text{ ggF}$		
	$N_{b-\text{jet},(p_{\mathrm{T}}>20 \text{ GeV})} = 0$				
$aa \rightarrow WW$	$\Delta \phi_{\ell\ell, E_{\rm T}^{\rm miss}} > \pi/2$	$80 {\rm GeV}$			
	$p_{\mathrm{T}}^{\ell\ell} > 30 \ \mathrm{GeV}$	$ m_{\tau\tau} - m_Z > 25 \text{ GeV}$	$m_{\tau\tau} < m_Z - 25 \text{ GeV}$		
	$55{<}m_{\ell\ell}{<}110~{\rm GeV}$	$\max\left(m_{\mathrm{T}}^{\ell}\right) > 50 \; \mathrm{GeV}$	$m_{\mathrm{T2}} > 165~\mathrm{GeV}$		
11	$\Delta \phi_{\ell\ell} < 2.6$		fail central jet veto		
			or fail outside lepton veto		
			$ m_{jj} - 85 > 15 \text{ GeV}$		
			or $\Delta y_{jj} > 1.2$		
	$N_{b\text{-jet},(p_{\mathrm{T}}>20 \text{ GeV})} = 0$				
	$m_{\ell\ell}$	$m_{\ell\ell} < 55 { m ~GeV}$			
	no $p_{\mathrm{T}}^{\mathrm{miss}}$ re				
Z/γ^*	$\Delta \phi_{\ell\ell} > 2.8$	$m_{ au au} > m_Z$	$z - 25 \mathrm{GeV}$		
		$\max\left(m_{\mathrm{T}}^{\ell}\right) > 50 \; \mathrm{GeV}$	fail central jet veto		
			or fail outside lepton veto		
			$ m_{jj} - 85 > 15 \text{ GeV}$		
			or $\Delta y_{jj} > 1.2$		

Event selections for Control Regions

CR	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 0 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 1 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} \ge 2 \text{ ggF}$
	$N_{b\text{-jet},(20 < p_{\mathrm{T}} < 30 \text{ GeV})} > 0$		$N_{b\text{-jet},(p_{\mathrm{T}}>20~\mathrm{GeV})}=0$
	$\Delta \phi_{\ell\ell,E_{\mathrm{T}}^{\mathrm{miss}}} > \pi/2$	$m_{ au au} < m_{ au}$	z - 25 GeV
	$p_{\rm T}^{\ell\ell} > 30 \; {\rm GeV}$	$\max\left(m_{\rm T}^\ell\right) > 50 {\rm GeV}$	$m_{\ell\ell} > 80~{ m GeV}$
$tar{t}/Wt$	$\Delta\phi_{\ell\ell}{<}2.8$		$\Delta\phi_{\ell\ell}{<}1.8$
,			$m_{\rm T2}{<}165~{\rm GeV}$
			fail central jet veto
			or fail outside lepton veto
			$ m_{jj} - 85 > 15 \text{ GeV}$
			or $\Delta y_{jj} > 1.2$

$$m_{\mathrm{T2}}^2 = \min_{\not p_1 + \not p_2 = \not p_{\mathrm{T}}} \left[\max\{m_{\mathrm{T}}^2(p_{\mathrm{T}}^a, \not p_1), m_{\mathrm{T}}^2(p_{\mathrm{T}}^b, \not p_2)\} \right]$$

where the minimization is over all possible two-momenta, $\overline{p}_{1,2}$, such that their sum gives the observed missing transverse momentum \overline{p}_T , and where each of p_T^a and p_T^b is the combined transverse momentum of a charged lepton and a jet.

- $m_{T_2}^2 \le m_w^2$ (decay of a pair of W each with a single invisible particle)
- $m_T^2 \le m_W^2$ (decay with single invisible particle)

m_{ii} and $\Delta \phi_{ii}$ selection for 0-jet category

30.11.2022

A. Gavrilyuk, ICPPA 2022

20

m_u and $\Delta \phi_u$ selection for 2-jet category

30.11.2022

A. Gavrilyuk, ICPPA 2022

21

$m_{\tau\tau}$ selection for 2-jet category

Category	WW	$t\bar{t}/Wt$	Z/γ^*
$N_{\rm jet} = 0 \ \rm ggF$	$1.02^{+0.07}_{-0.07}$	$0.93^{+0.22}_{-0.17}$	$0.96^{+0.07}_{-0.06}$
$N_{\rm jet} = 1 \rm ggF$	$0.85^{+0.16}_{-0.15}$	$1.05^{+0.19}_{-0.16}$	$0.98^{+0.10}_{-0.09}$
$N_{\rm jet} \ge 2 \ \rm ggF$	$0.81^{+0.34}_{-0.33}$	$0.96^{+0.23}_{-0.18}$	$0.98^{+0.18}_{-0.17}$

2 jet WW CR selection: m_{T2}

 $m_{
m T2}$ [GeV]

WW Control Regions m_T distributions

Top Control Regions m_T **distributions**

Ζττ Control Regions m_T distributions

STXS Composition

Reconstructed Signal Region

Expected Composition

Breakdown of the main contributions to the total uncertainty

Source	$\frac{\Delta\sigma_{\rm ggF} \cdot \mathcal{B}_{H \to WW^*}}{\sigma_{\rm ggF} \cdot \mathcal{B}_{H \to WW^*}} \ \left[\%\right]$
Data statistical uncertainties	5.1
Total systematic uncertainties	11
MC statistical uncertainties	3.8
Experimental uncertainties	6.3
Flavor tagging	2.7
Jet energy scale	1.1
Jet energy resolution	2.4
$E_{\mathrm{T}}^{\mathrm{miss}}$	2.2
Muons	2.1
Electrons	1.6
Fake factors	2.4
Pileup	2.5
Luminosity	2.0
Theoretical uncertainties	7.8
ggF	4.3
VBF	0.7
WW	4.2
Тор	3.8
$Z\tau\tau$	2.3
Other VV	2.9
Other Higgs	0.4
Background normalizations	4.5
WW	2.8
Тор	2.3
Ζττ	3.1
Total	12

Correlations between the cross-section measurements

Generators

Process	Matrix element	PDF set	UEPS model	Prediction order
	(alternative)		(alternative model)	for total cross section
ggF H	Powheg Box v2 [23–27] NNLOPS [26, 30, 43]	PDF4LHC15nnlo [57]	Рутніа 8 [28]	N ³ LO QCD + NLO EW [11, 33–42]
	(MG5_AMC@NLO) [49, 86]		(Herwig 7) [48]	
$\operatorname{VBF} H$	Powheg Box v2 [23–25, 43]	PDF4LHC15nlo	Рутніа 8	NNLO QCD + NLO EW [44–46]
	(MG5_AMC@NLO)		(Herwig 7)	
$VH \text{ excl. } gg \rightarrow ZH$	Powheg Box v2	PDF4LHC15nlo	Ρυτηία 8	NNLO QCD + NLO EW [52–56]
tĪH	Powheg Box v2	NNPDF3.0nlo	Pythia 8	NLO [11]
$gg \rightarrow ZH$	Powheg Box v2	PDF4LHC15nlo	Рутніа 8	NNLO QCD + NLO EW [90, 91]
$qq \rightarrow WW$	Sherpa 2.2.2 [69]	NNPDF3.0nnlo [50]	Sherpa 2.2.2 [70, 71, 73–76]	NLO [77, 78, 92]
	$(Q_{\rm cut})$		$(\text{Sherpa } 2.2.2 \ [71, 72]; \mu_q)$	
$qq \rightarrow WWqq$	MG5_AMC@NLO [49]	NNPDF3.0nlo	Pythia 8	LO
			(Herwig 7)	
$gg \rightarrow WW/ZZ$	Sherpa 2.2.2	NNPDF3.0nnlo	Sherpa 2.2.2	NLO [93]
$WZ/V\gamma^*/ZZ$	Sherpa 2.2.2	NNPDF3.0nnlo	Sherpa 2.2.2	NLO [94]
$V\gamma$	Sherpa 2.2.8 [69]	NNPDF3.0nnlo	Sherpa 2.2.8	NLO [94]
VVV	Sherpa 2.2.2	NNPDF3.0nnlo	Sherpa 2.2.2	NLO
$t\overline{t}$	Powheg Box v2	NNPDF3.0nlo	Рутніа 8	NNLO+NNLL [95–101]
	(MG5_AMC@NLO)		(Herwig 7)	
Wt	Powheg Box v2	NNPDF3.0nlo	Ρυτηία 8	NNLO [102, 103]
	(MG5_AMC@NLO)		(Herwig 7)	
Z/γ^*	Sherpa 2.2.1	NNPDF3.0nnlo	Sherpa 2.2.1	NNLO [79]
	(MG5_AMC@NLO)			

30.11.2022

Projection from 36 fb⁻¹ to HL-LHC 3000 fb⁻¹ ATL-PHYS-PUB-2018-054

Prod. mode	Scenario	$\Delta_{ m tot}/\sigma_{ m SM}$	$\Delta_{ m stat}/\sigma_{ m SM}$	$\Delta_{\mathrm{exp}}/\sigma_{\mathrm{SM}}$	$\Delta_{ m sig}/\sigma_{ m SM}$	$\Delta_{ m bkg}/\sigma_{ m SM}$
ggF	Run 2, 36 fb ^{-1}	+0.191 -0.189	$+0.099 \\ -0.098$	+0.112 -0.110	$+0.047 \\ -0.036$	$+0.092 \\ -0.096$
	HL-LHC S1	$+0.064 \\ -0.065$	$+0.010 \\ -0.010$	$+0.037 \\ -0.037$	$+0.040 \\ -0.039$	+0.033 -0.036
	HL-LHC S2	$+0.046 \\ -0.044$	$+0.010 \\ -0.010$	$+0.030 \\ -0.029$	$+0.023 \\ -0.020$	+0.025 -0.025