Transverse momentum distributions and $p_t - N_{ch}$ correlations in Extended Multipomeron Exchange Model

Vladimir Kovalenko, <u>Aleksandra Marova[†]</u>, Andrei Puchkov ([†]st097602@student.spbu.ru)

Laboratory of ultra-high energy physics (LUHEP), St. Petersburg State University

Introduction

The multipomeron exchange model was considered earlier in papers [1] - [5]. Within the framework of this model, it was possible to successfully describe the charged multiplicity (N_{ch}) , mean transverse momentum (p_t) and p_t - N_{ch} correlations in pp and $p\overline{p}$ collisions over a wide energy range (from ISR to LHC). It allowed also to reproduce the growth of the yields of strange, multi-strange and charm particles as a function of multiplicity for pp, p - Pb and Pb - Pb collisions at the LHC energy. For this, in particular, the general idea of the Schwinger mechanism of particle production from a string [6] was used, where the transverse momentum distribution of charged particles from a string has a Gaussian form, and in case of string overlap the effective string tension was related to the number of strings. However, experimental data show that the pt-spectra of particles produced in pp collisions are better described by the thermal model. To solve this problem, we introduced the thermal-like pt distribution function which can be considered as averaging out over string tension fluctuations [7]. We calculated p_t -spectra and p_t - N_{ch} correlations functions for pp-collisions at the LHC energy in extended multipomeron exchange model and compared the results with the experimental data [8].

Transverse momentum distribution

1. Multipomeron Exchange Model:

 $\rho(N_{ch}, p_t)$ is the distribution of N_{ch} particles over p_t :

$$\rho(N_{ch}, p_t) = \frac{C_w}{z} \sum_{n=1}^{\infty} \left(1 - \exp(-z) \sum_{l=0}^{n-1} \frac{z^l}{l!} \right) \cdot \exp(-2n\kappa\delta) \frac{(2n\kappa\delta)^{N_{ch}}}{N_{ch}!} \cdot \frac{1}{n^\beta t} \exp\left(-\frac{\pi p_t^2}{n^\beta t}\right) \,.$$

Here, C_w is a normalization factor:

$$C_w = \left[\sum_{n=1}^{\infty} \frac{1}{nz} \left(1 - exp(-z)\sum_{l=0}^{n-1} \frac{z^l}{l!}\right)\right]^{-1} = \left[\sum_{n=1}^{\infty} \frac{1}{nz} \left(1 - \frac{\Gamma(n,z)}{\Gamma(n)}\right)\right]^{-1}.$$
$$z = \frac{2C\gamma s^{\Delta}}{R^2 + \alpha' \ln(s)}, \ \Delta = 0.139, \ \alpha' = 0.21 \ GeV^{-2}, \ \gamma = 1.77 \ GeV^{-2}, \ R_0^2 = 3.18 \ GeV^{-2}, \ C = 1.5.$$
$$t = 0,566 \ GeV^2, \ k = 0.255 + 0.0653 \ \ln\sqrt{s}, \ \beta = 1.16 \left[1 - \left(\ln\sqrt{s} - 2.52\right)^{-0.19}\right].$$

Transverse momentum distribution is defined as follows:

$$\frac{d^2 N_{ch}}{d\eta dp_t} \equiv P(p_t) = \sum_{n=1}^{\infty} N_{ch} \cdot \rho(N_{ch}, p_t)$$

2. Transverse momentum distribution with simplify Schwinger mechanism:

$$P_1(p_t) = \frac{2\kappa\delta C_w}{z} \sum_{n=1}^{\infty} \left(1 - \frac{\Gamma(n,z)}{\Gamma(n)} \right) \cdot \left(\frac{1}{n^{\beta}t}\right) \cdot \exp\left(-\frac{\pi p_t^2}{n^{\beta}t}\right)$$

(2)

3. Transverse momentum distribution with Bialas transform (1):

$$P_2(p_t) = \frac{2\kappa\delta C_w}{\pi z} \sum_{n=1}^{\infty} \left(1 - \frac{\Gamma(n,z)}{\Gamma(n)} \right) \cdot \frac{1}{\sqrt{n^\beta t}} \cdot \left(\frac{1}{p_t}\right) \cdot \exp\left(-2p_t \sqrt{\frac{1}{n^\beta t}}\right) \,.$$

Results

\sqrt{S}	900 GeV	2,76 TeV	7 TeV	Transverse momentum distributions	
$t_{ m Schwinger}$	0.5 GeV^2	$0.529 \mathrm{GeV}^2$	0.542 GeV^2	900 GeV 2,76 TeV 7 TeV	nger function
$t_{ m Bialas}$	0.515 GeV^2	0.568 GeV^2	0.588 GeV^2	- Bialas function	function
$eta_{ m Schwinger}$	0.3	0.32	0.35		
$\beta_{ m Bialas}$	0.2	0.2	0.30		
$k_{ m Schwinger}$	0.568	0.801	0.996		
k_{Bialas}	0.76	1.0	1.309		
$\chi^2/NDF_{Schwinger}$	3298/29	2772/29	2673/29	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.5 p _t (GeV/c)
χ^2/NDF_{Bialas}	192/29	130/29	94/29	Fig 1. Transverse momentum distribution in pp collisions in Schwinger and Bialas approached by pp and pp	es
compared with experimental data [8].					

Conclusions

References

We have shown that the thermal-like function for transverse momentum obtained on the basis of Bialas work (4) describes the p_t spectra in pp collisions much better than the Schwinger approach (3), this is especially clear at high values of p_t . We obtained that $p_t - N_{ch}$ correlations can be described in the same way as for Schwinger distribution. In future work, we plan to perform simultaneous fitting of the p_t spectra and $p_t - N_{ch}$ for the parameter estimation and also to consider optimizing the N_{ch} distribution.

[1] Armesto N., Derkach D.A., Feofilov G.A. Phys. Atom. Nucl. 2008, **71**, 2087–2095.
 [2] Bodnia E., Derkach D., Feofilov G., Kovalenko V., Puchkov A. PoS QFTHEP2013 2013, 60.
 [3] Kovalenko V.N., Puchkov A.M., Feofilov G.A. Bull. Russ. Acad. Sci. Phys. 2016, **80**, 966–969.
 [4] Feofilov G., Kovalenko V., Puchkov A. EPJ Web Conf. 2018, **171**, 18003.
 [5] Kovalenko V., Feofilov G., Puchkov A., Valiev F. Universe 2022, **8**, 246.
 [6] Schwinger J. S. Phys. Rev. 1951, **82**, 664–679.
 [7] Bialas A. Phys. Lett. B 1999, **466**, 301–304.
 [8] ALICE Collaboration, Eur. Phys. J. C 2013, **73**, 2662.

Acknowledgments

The research was supported by the SPbSU project, No 93025435.