2-color QCD phase diagram

Khunjua Tamaz^{1,4}, Klimenko Konstantin², Zhokhov Roman³

¹ Department of Theoretical Physics, Faculty of Physics, Lomonosov Moscow State University

² Logunov Institute for High Energy Physics, NRC "Kurchatov Institute", Protvino, Moscow Region, Russia

³ Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation (IZMIRAN), Troitsk, Moscow, Russia

⁴ University of Georgia, Georgia

Б АЗ И С Фонд развития теоретической физики и математики

6th International Conference on Particle Physics and Astrophysics (ICPPA-2022) 29 November - 2 December 2022

QCD phase diagram

Phase diagram

It is possible to demonstrate that the TDP is invariant with respect to the socalled duality transformation

0.0	0.0		0.6		
0.6	J 0.6		0.0	5.0	

2-color QCD

There are a lot similarities between QCD and 2-color QCD

• similar phase transitions:

confinement/deconfinement, chiral symmetry breaking/restoration at large T and μ

- A lot of physical quantities coincide up to few dozens percent *Critical temperature* $T_c/\sqrt{\sigma}$, *topological susceptibility* $\chi^{\frac{1}{4}}/\sqrt{\sigma}$ *shear viscosity* η/s
- There are no sign problem in SU(2) case and lattice simulations at non-zero baryon density are possible

It is a great playground for studying dense matter

2-color NJL model and its thermodynamical potential

 $L = \bar{q} \left[\gamma^{\nu} i \partial_{\nu} \right] + \mathcal{M} + H \left[(\bar{q}q)^2 + (\bar{q}i\gamma^5 \vec{\tau}q)^2 + (\bar{q}i\gamma^5 \sigma_2 \tau_2 q^c) (\overline{q^c}i\gamma^5 \sigma_2 \tau_2 q) \right]$

Universal catalysis effect of chiral imbalanceChiral imbalance mimics other chemical potentials

$$\mathcal{M} = \frac{\mu_B}{3}\gamma^0 + \frac{\mu_I}{2}\tau_3\gamma^0 + \frac{\mu_{I5}}{2}\tau_3\gamma^0\gamma^5 + \mu_5\gamma^0\gamma^5$$

• μ_B is baryon chemical potential,

- μ_I is taken into account to introduce the non-zero imbalance between u and d quarks,
- μ_{I5} and μ_5 accounts for chiral isospin and chiral imbalances.

From here we use notations $\mu \equiv \mu_B/3$, $\nu = \mu_I/2$ and $\nu_5 = \mu_{I5}/2$. If you use Habbard-Stratanovich technique and auxiliary fileds

 $\sigma(x) = -2H(\bar{q}q), \ \vec{\pi}(x) = -2H(\bar{q}i\gamma^5\vec{\tau}q)$ $\Delta(x) = -2H\left[q^T C i\gamma^5\sigma_2\tau_2 q\right], \ \Delta^*(x) = -2H\left[\bar{q}i\gamma^5\sigma_2\tau_2 C \bar{q}^T\right]$

The ground state expectation values of the composite bosonic fields are

 $\langle \sigma(x) \rangle = M, \quad \langle \pi_1(x) \rangle = \pi_1, \quad \langle \Delta(x) \rangle = \Delta, \quad \langle \Delta^*(x) \rangle = \Delta^*$

Conclusions

- There exist several dualities of the phase diagram
- Since dualities do not involve μ_5 , it stands alone from other chemical potentials
- This leads to various interesting properties of μ_5