Evidence of large potassium abundance in the Earth following from new Borexino data

Valery Sinev, Leonid Bezrukov, Ivan Karpikov, Andrei Mezhokh, Svetlana Silaeva

Institute for Nuclear Research of the Russian Academy of Sciences

Borexino detector and its results

There were measured fluxes of ⁷Be, ⁸B, *pep* and *pp* neutrinos from the Sun. The fluxes appeared the same as ones predicted by Standard solar model (SSM). Last result was performed at Neutrino-2020 and Neutrino-2022 – measurement of CNO cycle neutrinos. This flux is > 1 σ larger than predicted for high metallicity (HM) 5.0 cpd/100t and > 2 σ for low metallicity (LM) 3.9 cpd/100t.

The detector is also sensitive for antineutrinos as well as for neutrinos. It makes possible to estimate the ⁴⁰K geoneutrino flux.

Borexino and INR pdf-s for the experimental spectrum analysis

Transformation of ⁴⁰K neutrino spectrum to pdf

Conclusion

INR analysis of Borexino experimental spectrum was done. It was found that ⁴⁰K counting rate is high (11cpd) compare with prediction of BSE model (0.05 cpd).

Experimental spectrum analysis

Monte Carlo ⁴⁰K counting rate distribution in case of ⁴⁰K absence ($R(^{40}K) = 0$) and in presence ($R(^{40}K) = 7$). Red line marks $R(^{40}K) = 7$ cpd. The probability to find the value of $R(^{40}K) \ge 7$ at zero hypothesis is 3×10^{-5} At level 6σ zero hypothesis rejected

International Conference on Particle Physics and Astrophysics 2022, MEPhI, Moscow