The possibility of finding the P-symmetry breaking decay of the charged a_0 meson

Vitalii Petrov and Vladimir Kovalenko (St Petersburg State University) 6th International Conference on Particle Physics and Astrophysics, Nov 29 - Dec 2, 2022, Moscow

Abstract

The spatial parity (P) violation in strong interactions have never been observed experimentally. One can include a P-breaking term in the QCD Lagrangian. Thus, there can be a local violation of P-symmetry in the medium with high temperature and large topological fluctuations [1]. As a consequence, some hadrons would decay in channels that forbidden by the global parity conservation [2]. In this work we investigate the possibility of observing such process: decay of a charged a_0 meson into charged pion and photon [3]. We study an invariant-mass spectrum of $\pi^{\pm} - \gamma$ pairs produced in PYTHIA Monte Carlo generator with enabled $a_0^{\pm} \rightarrow \pi^{\pm} + \gamma$ decay channel. To distinguish the peak of mentioned decay from the background the mixed-event subtraction, kinematic cuts and Dalitz plots analysis was used. As a result we have estimated minimal number of pp collision events for significant signal of the P-breaking decay.

Symmetry breaking in strong interaction

Analysis of generated data

The QCD Lagrangian

$$\mathcal{L}_{QCD} = -\frac{1}{4} G^{\mu\nu,a} G^a_{\mu\nu} + \bar{q} (i\gamma^{\mu} D_{\mu} - \hat{m}_q) q, \qquad (1)$$
$$D_{\mu} = \partial_{\mu} - i G^a_{\mu} \lambda^a, \quad G^a_{\mu\nu} = \partial_{\mu} G^a_{\nu} - \partial_{\nu} G^a_{\mu} + g f^{abc} G^b_{\mu} G^c_{\nu}$$

can be supplemented by the θ -term that breaks the P symmetry:

$$\Delta \mathcal{L}_{\theta} = \theta \frac{g^2}{32\Pi^2} Tr \left(G^{\mu\nu} \epsilon_{\mu\nu\alpha\beta} G^{\alpha\beta} \right)$$
(2)

with a very small value $\theta \leq 10^{-9}$. One of the possible theories considers violation as a local breaking due to large topological fluctuations at high temperature and generation of configurations of nontrivial topological charge. The evolution of topological charge in a finite space region leads to nonzero chiral chemical potential μ_5 . As one of the consequences, a_0^{\pm} meson may decay by the forbidden channel: $a_0^{\pm} \rightarrow \pi^{\pm} + \gamma$ [3]. If $\mu_5 = 500 \text{ MeV}$ and $|\vec{q}| = 128 \text{ MeV}$, estimated (from [4]) branching ratio for that mode is 0.001%.

Decays of a_0 **meson**

• To distinguish the correlated signal from the combinatorial background we used the event mixing technique.

• $\pi^{\pm} - \gamma$ pairs produced directly from a_0 most likely have the opposite azimuthal direction. Taken this into account, we applied the following selection criteria: $\Delta \varphi_{\pi^{\pm},\gamma} > \frac{\Pi}{2}$.

• There is the contribution of γ produced by π_0 or η . To suppress it, we rejected γ particles if they had in the same event a second γ , so that in combination $M_{\gamma\gamma}$ was close to the mass of π_0 or η (γ cut). When all corrections and selections are applied, the remain spectrum contains only $\pi^{\pm} - \gamma$ pairs produced by decay chains without participation of π_0 and η mesons (Fig. 2).

There are several decay chains of a_0^{\pm} that lead to the final pair of π^{\pm} meson and γ particle [5]. $a_0^{\pm} \rightarrow \eta + \pi^{\pm}$ is the dominant channel (90%). Then η meson can decay into 2γ (39.4%), $\pi^+ + \pi^- + \pi^0$ (23%) or $3\pi^0$ (32.6%). There is 4.29% chance that η decays into several particles with only one γ (mostly $\pi^+ + \pi^- + \gamma$). π^0 mostly decays into 2γ (98.8%). Thus, γ , that has a_0^{\pm} in ancestors, was probably produced by η or π^0 mesons. It can be detected as stripes at $M_{\gamma\gamma} = 135 \text{ MeV} (\pi^0)$ and 548 MeV (η) at the Dalitz plot (Fig. 1). The second a_0^{\pm} decay channel, $K^{\pm} + K^0$ (10%), produces low rate of $\pi^{\pm} - \gamma$ pairs.

Fig. 2: The composition of invariant-mass spectrum after γ cut. The branching ratio of $(a_0^{\pm} \rightarrow \pi^{\pm} + \gamma)$ is 5%.

The main contribution in the background arises due to the correlations that occurs from diquarks in PYTHIA. There is a peak produced by direct $a_1^{\pm} \rightarrow \pi^{\pm} + \gamma$ decay near the region of a_0 mass. Apart of that peak all particular spectra are smooth around 0.98 GeV. The analysis was applied for the data generated in PYTHIA8 Monte Carlo simulator with $\sqrt{s} = 13TeV$ and enabled $a_0^{\pm} \rightarrow \pi^{\pm} + \gamma$ decay channel (Fig. 3). There was 10 millions events for branching ratio = 5% as a test and 60 millions for branching ratio = 0.001% as more realistic scenario.

References

- [1] D. Kharzeev, Annals of Physics, vol. 325, 1., p. 205 218, 2010.
- [2] A.Andrianov, D.Espriu and X.Planells, Eur. Phys. J. C, vol. 73, no.1, p. 2294, 2013.
- [3] A. Andrianov et al, EPJ Web of Conferences, vol. 158, p. 03012, 2017.
- [4] A. Putilova, Master's thesis, "THERMODYNAMIC PROPERTIES OF MESONS IN A MEDIUM WITH A CHIRAL CHEMICAL POTENTIAL," 2017.
- [5] M. Tanabashi et al. (Particle Data Group), *Phys. Rev. D*, vol. 98, p. 030001, (2018) and 2019 update.

The study was funded by the Russian Science Foundation grant No. 22-22-00493, https://rscf.ru/en/project/22-22-00493/

Fig. 3: Analysis of spectra with branching ratio of $(a_0^{\pm} \rightarrow \pi^{\pm} + \gamma)$ left: 5%, right: 0.001%. Black markers simulate data in experiment, blue correspond all decays of a_0^{\pm} which produce $\pi^{\pm} + \gamma$ pairs selected after γ cut and orange shows true yield from the desired decay.

Conclusion

In the case of low branching ratio (realistic = 0.001%) minimal number of events to detect the $a_0^{\pm} \rightarrow \pi^{\pm} + \gamma$ decay is 10^{12} . Unideal effectivity of γ registration, contamination of $\eta \rightarrow \pi^+ + \pi^- + \gamma$ decays and closeness of $a_1(1260)$ peak will reduce the chances.