

What Machine Learning Can Do for a Focusing Aerogel Detectors

F.Shipilov¹, A.Barnyakov², S.Kononov², F.Ratnikov¹

¹NRU Higher School of Economics, Moscow

²Novosibirsk State Technical University, Novosibirsk

Problem: gathering data from the detector requires handling $\sim 10^8$ events/s. As the detector captures a great amount of noise, a fast and lightweight on-line noise filtering algorithm is needed to mitigate it. The off-line reconstruction task on noisy data should be addressed as well.

Solution: use Machine Learning tools to estimate the location of signal hits / the speed of the particle.

Data sample

- Maximum operating noise intensity $1 MHz/mm^2$
- Noise / signal ratio ≈ 70

400

50 40 30 20 10 0 1 2 3 4 5 6 7 Thit, ns

Noise filtering

- Not regular matrix structure due to gaps between SiPM
 - project hits (times) to a regular grid
 - 1 2-channel tensor: hits $\{0,1\} + \text{times } [0;t_{\max}]$
 - **2** *C*-channel tensor: $t_0 \in [0, dt), t_1 \in [dt, 2dt), \ldots dt = t_{max}/C$
- Train ResNet-18 CNN to extract bounding box coordinates
- Objective: expectile loss (asymmetric MSE), penalizes cropping true data

Reconstruction

Stat RECO

"Fit" algorithm:

- Calculate Cherenkov angles θ_c before last layer refraction
- Drop physically impossible values corresponding to $\beta = v/c \ge 1$
- Subtract the pure noise CDF
- Take a numerical derivative and obtain the peak angle $\hat{\theta}_c$

ML RECO

$$\operatorname{argmin}\left\{\sum_{i=1}^{n}\omega_{\tau}^{e}(y_{i}-q_{i})(y_{i}-q_{i})^{2}\right\}, \text{ where } \omega_{\tau}^{q}(\varepsilon) = \omega_{\tau}^{e}(\varepsilon) = \begin{cases} 1-\tau, & \varepsilon \leq 0\\ \tau, & \varepsilon > 0 \end{cases}$$
(1)

Metrics

• Efficiency = $\frac{|B \cap B^{gt}|}{|B^{gt}|}$, filtration efficiency • Reduction = $\frac{|B|}{|B_{max}|}$, noise suppression

- Train ResNet-18 CNN to predict β with MSE objective
- Configurations:
 - no track prior
 - center image using track info
 - project hits to circular conic section, drop impossible, center

0.939	0.896	0.245	32	0.922	0.370
0.950	0.947	0.447	hits+times	0.947	0.447
0.960	0.971	0.536	64	0.998	0.892

Summary

- ResNet-18 CNN provides a significant level of denoising with high efficiency:
 - Reduction $\sim 0.4,$ Efficiency $\geqslant 0.95$ with $1 \rm MHz/mm^2$ noise
 - Reduction $\sim 0.1,$ Efficiency $\geqslant 0.95$ with $100 {\rm KHz}/{\rm mm}^2$ noise
- au and C introduce a trade off between noise suppression and efficiency (see tables)
- An object detection pipeline built upon the model can be utilized for trigger mode
- Further optimization is needed to ensure real time performance

Summary

- ResNet without track prior is similar to stat models (top left figure)
- ResNet with track prior outperforms stat models by β RMSE on all tested noise intensities (top left figure)
- ResNet produces more accurate results for hard samples (low β & impulse), does not generate outliers (top right figure, bottom row)
- ML-based RECO performs favorably comparing with a statistically based RECO

The 6th International Conference on Particle Physics and Astrophysics, 29 November — 2 December 2022, Moscow, Russia