Comparison of Geant4 simulation data with hadron shower data in the PAMELA experiment

Alekseev V.^{1,2}, Mayorov A.¹, Golub O.¹

¹ National Research Nuclear University «MEPhI», Moscow
 ² P.G. Demidov Yaroslavl State University, Yaroslavl

Introduction

PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) — a cosmic ray research module (2006 – 2016). The main goal of the device: positron and antiproton detection in cosmic rays.

PAMELA calorimeter consists of 22 tungsten plates +

Comparison of models

- Consider a narrow rigidity range.
- Calculate shower descriptors for simulation events in this range.
- Compare distributions for different models by twosample goodness-of-fit test (KS – test or CvM – test).

Rigidity < 10 GV: QGSP_BIC differs from other models.

On figure: p-value for KS-test ($\alpha = 0.05$).

 $R>20{\rm GV}:$ QGSP_BERT model agrees with experiment.

 $8 < R < 20 {\rm GV}$: QGSP_INCLXX model disagrees with experiment.

 22×2 scintillating silicon layers each with 96 read-out strips in each (X and Y) projections.

The goal of our work is to choose appropriate Geant4 hadronic cascade model for different energy ranges.

Geant4 Physics Lists

Simulation data (protons):

- QGSP_BERT Quark-Gluon String model with Bertini cascade.
- FTFP_BERT Fritiof model with Bertini cascade.
- \bullet QGSP_BIC QGSP with binary cascade.
- QGSP_INCLXX QGSP with Liege intranuclear cascade model.

	Quark Gluon string
Binary cascade	
	Fritiof string
BERT Intranuclear cascade	
1 MeV 10 MeV 100 MeV 1 Ge	eV 10 GeV 100 GeV 1TeV

Data preprocessing

Selection criteria

Basic criteria: anti-coincidence system; time-of-flight system; tracking system (correctly restored trajectory).

Cascade selection: at least 150 strips triggered in calorimeter; energy loss at least 500 mip.

Rigidity 6..16 GV: QGSP_INCLXX differs from other models.

On figure: p-value for KS-test ($\alpha = 0.05$).

Rigidity > 16 GV: FTFP_BERT differs from other models. On forward purplus for VS test (a. 0.05)

On figure: p-value for KS-test ($\alpha = 0.05$).

Depth of cascade development:

planemaxy - number of plane with maximal energy
loss (Y projection).

All models agree with experiment.

Results

- Low rigidities (< 6GV): the binary cascade simulation gives distributions of parameters, which are not agree with Bertini and Liege cascades.
- For R = 6..15 GV: physics lists QGSP and FTFP do not agree with QGSP_INCLXX model, then (supposing agreement between BERT and IN-CLXX) we conclude that INCLXX and QGSP /

Hadronic shower descriptors

- qcyl, ncyl energy loss and number of triggered strips in a cylinder around shower axis (R = 8 strips).
- qtr, ntr energy loss and number of triggered strips in a cylinder around shower axis (R = 4 strips).
- qcore, ncore energy loss and number of triggered strips in a cylinder around shower axis up to the shower maximum ($R = 2R_M$, R_M is Moliere radius)
- planemaxy number of plane with maximal energy loss (Y projection).
- nstrip total number of triggered strips.

Comparison of simulation and experiment

Distributions of **qcore** and **qcyl** parameters for simulation and experiment:

FTFP are different in cascade simulation.

• At the large (> 20 GV) rigidities we observe the difference between QGS and FTF models.

From comparison with experiment we conclude:

- For the high energies statistical agreement is reached for QGSP_BERT model.
- For the medium energies (6..15 GV) there is no statistical difference between FTFP and QGSP models.
- For the low energies agreement is reached for Bertini cascade.
- Liege cascade model agrees with experimental data for rigidities up to 6–7 GV, despite of it is used for rigidities < 20GV.