Scaling properties of anisotropic flow at Nuclotron-NICA energies

Petr Parfenov^{1,2,*}, Arkadiy Taranenko²

¹ INR RAS, Moscow, Russia

² NRNU MEPhI, Moscow, Russia

*terrylapard@gmail.com

This work was done in INR RAS and supported by the RSF grant No. 22-12-00132

v_n at Nuclotron-NICA energies

NCQ scaling

NCQ scaling: $v_n(p_T) \to \frac{v_n}{n_q^{n/2}} \left(\frac{KE_T}{n_q}\right),$

Anisotropic flow v_n at Nuclotron-NICA energies is a delicate balance between:

- The ability of pressure developed early in the reaction zone $(t_{\exp} = \frac{R}{c_s}, c_s = \sqrt{\frac{dp}{d\varepsilon}})$
- The passage time for removal of the shadowing by spectators $(t_{\text{pass}} = \frac{2R}{\gamma_{\text{CM}}\beta_{\text{CM}}})$

Scaling relations provide a useful tool to:

- contribution • separate to $v_n(R,\sqrt{s_{NN}}, \text{cent}, \text{PID}, p_T, y)$ from different effects
- perform comparison between v_n results from the data with different system size, $\sqrt{s_{NN}}$, etc.

Scaling with integral v_n

 $v_2(R, \sqrt{s_{NN}}, \text{cent}, \text{PID}, p_T, y) = v_2(R, \sqrt{s_{NN}}, \text{cent}) \times v_2(\text{PID}, p_T, y)?$ Scaling holds for a wide energy range, different centralities and colliding systems Breaks around $\sqrt{s_{NN}} \approx 3.3$ GeV where $v_2 \approx 0$ Useful tool for the additional model constraints and comparison between experimental data with different R, cent, $\sqrt{s_{NN}}$

Conclusions

- NCQ scaling: holds at $\sqrt{s_{NN}} > 4$ GeV in both experimental data and models even in pure string/hadron cascade modes! More thorough studies are needed at the lower energies, scaling at $\sqrt{s_{NN}} > 4.5$ GeV might be accidental.
- Scaling with t_{pass} : holds at $\sqrt{s_{NN}} > 2 2.7$ GeV and breaks at $\sqrt{s_{NN}} 3$ GeV. Shows that the main contribution in $v_n(\sqrt{s_{NN}})$ is due to the energy dependence of t_{pass} .
- Scaling with integral v_n : holds at a wide beam energy range, breaks only at around $\sqrt{s_{NN}} > 3.3$ GeV. Provides a useful tool to make comparison of v_n results from different colliding systems, centrality classes and beam energies. Scaling relations will be useful for the future v_n measurements in the BM@N and MPD experiments at NICA