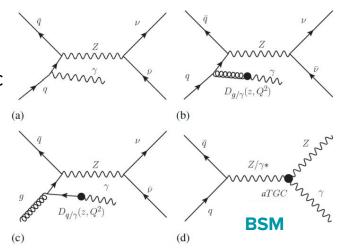
Inclusive $Z(\nu \bar{\nu})\gamma$ full Run2 analysis report

Diana Pyatiizbyantseva on behalf of the ZnunuGamma group

National Research Nuclear University "MEPhI"


MEPhI@Atlas meeting

Motivation

Standard Model:

- A higher branching ratio of the neutral decay channel in comparison to the charged lepton decays of Z boson and better background control in comparison with the hadronic channel.
- <u>Previous study</u> for this channel 36.1 fb⁻¹ data. Full Run2 statistics (139 fb⁻¹) → increase of measurement accuracy (expectation of an increase in the experimental sensitivity by a factor of 2).
- Goal: integral and differential in $\mathbf{E_T}^\gamma$, $\mathbf{N_{jets}}$, $\mathbf{p_T}^{miss}$, $\Delta \Phi[\gamma, \mathbf{p_T}^{miss}]$, $\mathbf{p_T}(Z\gamma)$, η_γ cross-sections. Comparison with theory predictions including NNLO QCD and NLO EWK corrections.

Glance: ANA-STDM-2018-54

Beyond SM:

- The strongest up-to-date limits on anomalous neutral triple gauge-boson couplings (aTGCs) using vertex functions and EFT formalisms → interpretation.
- **Combination** of the EFT limits between Zy and ZZ + ratio of Zy/ZZ cross-sections.

Selection optimisation: increase in statistical significance

<u>Topology</u>: high-energetic γ + high missing transverse momentum p_T^{miss}

Multivariate (MV) method of the selection optimisation takes into account the signal significance Z as a function of the threshold values of the variables:

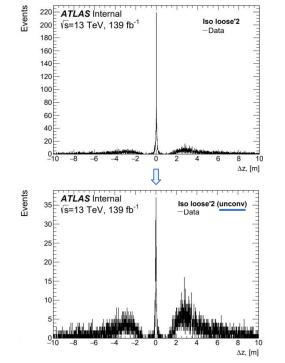
$$Z = N_{
m signal}/\sqrt{N_{
m signal} + N_{
m bkg}}$$

The output of the MV optimisation procedure is a vector of threshold values of the variables at which the maximum Z is reached.

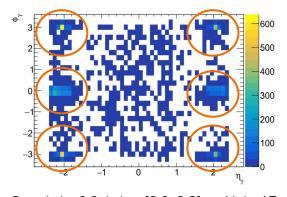
Uncomplicated method (unlike TMVA) is useful for differential cross-section measurements.

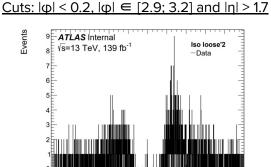
	Preselections	Cut Value
	$E_{ m T}^{ m miss}$	> 120 GeV
	$ar{E}_{\mathrm{T}}^{\gamma}$	> 150 GeV
Numb	er of tight isolated photons	$N_{\gamma}=1$
	Lepton veto	$N_e = 0, N_\mu = 0$
	Selections	Cut Value
	$E_{ m T}^{ m miss}$	> 130 GeV
SR	$E_{\mathrm{T}}^{\mathrm{miss}}$ significance	> 11
	$ \Delta\phi(ec{p}_{\mathrm{T}}^{\mathrm{miss}},\gamma) $	> 0.6
	$ \Delta\phi(ec{p}_{\mathrm{T}}^{\mathrm{miss}},j_{1}) $	> 0.4

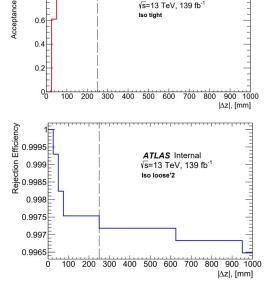
77.6 ± 0.7 15.5 ± 0.5 16.2 ± 0.5	41.3 ± 0.2 61.8 ± 0.6 61.5 ± 0.6
16.2 ± 0.5	61.5 ± 0.6
33.1 ± 0.6	53.5 ± 0.3
16.0 ± 0.5	61.4 ± 0.6
17.6 ± 0.5	60.3 ± 0.6
	16.0 ± 0.5


No significant increase in statistical significance with using N_{b-iets} and $p_T^{SoftTerm}$ variables.

Photon pointing: beam-induced background (BIB)


Muons from pion and kaon decays in hadronic showers, induced by beam losses in non-elastic collisions with gas and detector material, deposit large amount of energy in calorimeters through radiative processes (= fake jets).


The characteristic peaks of the fake jets due to BIB concentrate at $\pm \pi$ and $\mathbf{0}$ (mainly due to the bending in the


horizontal plane that occurs in the D1 and D2 dipoles and the LHC arc).

 $\Delta z = z_{\gamma} - z_{
m vtx}$

ATLAS Internal

 $|\Delta z| < 250 \text{ mm}$ Rejection efficiency: $(100 \pm 3)\%$ Acceptance efficiency: $(99.7 \pm 0.9)\%$

Background composition

Percentage of the total predicted background	Background composition for Z(νν)γ:
35 % •	γ +jets – via MC → ABCD method based on E_T^{miss} -significance and additional variable
27 % •	$W(Iv)\gamma$ – fit to data in additional CR based on N_{lep} (shape from MC)
21% •	e→γ – fake-rate estimation using Z-peak (tag-n-probe) method
14 % •	jet→γ – ABCD method based on γ ID and isolation
1.9 %	Z(I ⁺ I ⁻)γ – via MC
1.5 % •	ttγ – via MC

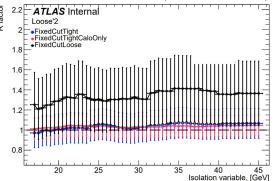
jet → γ misID background: correlation factor

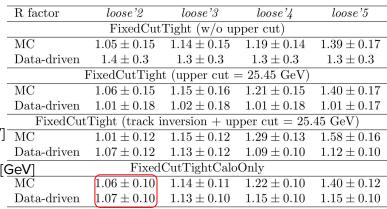
Background is estimated from data using **2D-sideband method**:

Photon isolation and identification variables are used to construct the sidebands.

Correlation is measured in data and MC by $R = \frac{N_{\rm A}N_{\rm D}}{N_{\rm B}N_{\rm C}}$.

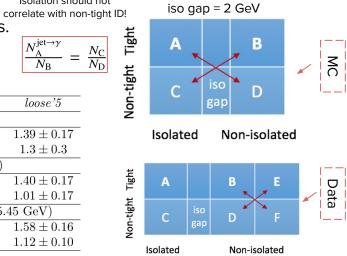
Non-tight: at least one of the cuts on the following

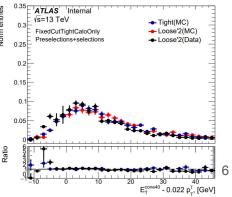

variables should fail in these:


- loose'2: w_{s3}, F_{side}
 loose'3: w_{s3}, F_{side}, ΔΕ
- loose'4: w_{s3} , F_{side} , ΔE , E_{ratio}
- loose'5: w_{s3} , F_{side} , ΔE , E_{ratio} , w_{tot}

FixedCutTightCaloOnly:

A: tight, E_T^{cone40} - 0.022 p_T^{γ} < 2.45 [GeV]


- **B:** tight, 2.45 + gap $< E_{\tau}^{\text{cone}40} 0.022 p_{\tau}^{\gamma} [\text{GeV}]$
- **C:** non-tight, E_T^{cone40} 0.022 p_T^{γ} < 2.45 [GeV]
- **D:** non-tight, $2.45 + \text{gap} < E_T^{\text{cone}40} 0.022 p_T^{\gamma} [\overline{\text{GeV}}]$

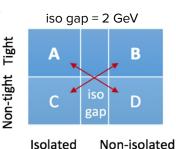


FixedCutTightCaloOnly

Data-driven					
Cut	loose'2	loose'3	loose'4	loose'5	
9.45	1.08 ± 0.11	1.14 ± 0.11	1.12 ± 0.10	1.13 ± 0.10	
9.95	1.07 ± 0.10	1.13 ± 0.10	1.15 ± 0.10	1.15 ± 0.10	
10.45	1.09 ± 0.10	1.14 ± 0.10	1.14 ± 0.10	1.15 ± 0.10	
10.95	1.18 ± 0.11	1.23 ± 0.11	1.21 ± 0.10	1.22 ± 0.10	
11.45	1.23 ± 0.11	1.27 ± 0.11	1.22 ± 0.10	1.22 ± 0.10	

Isolation should not

jet → γ misID background: uncertainties


Statistical uncertainty:

• The event yields of four regions in data and non jet $\rightarrow \gamma$ background are varied by $\pm 1\sigma$ independently (4%).

• The statistical uncertainty on the signal leakage parameters is negligible.

Total statistics: 4%.

Central value	1960 ± 83
loose'3	-334
${f loose'4}$	-397
loose'5	-472
Isolation gap $+0.15$ GeV	+33
Isolation gap -0.15 GeV	-22

Systematic uncertainty:

- Anti-tight definition and isolation gap choice variations of ABCD regions determination for ±1σ changes in data yield (24%).
- Uncertainty coming from the signal leakage parameters is obtained via using different generators and parton shower models (9%).

Signal leakage parameters	MadGraph+Pythia8, Sherpa 2.2	MadGraph+Herwig7, MadGraph+Pythia8	Relative deviation
c_B	0.0713 ± 0.0002	0.1000 ± 0.0011	29%
\mathbf{c}_C	0.00879 ± 0.00007	0.0092 ± 0.0003	4%
c_D	0.00070 ± 0.00002	0.00099 ± 0.00010	29%
$jet \to \gamma$ est.	1960	1785	9%

• The iso/ID uncertainty on reconstruction photon efficiency $\delta_{\text{eff}}^{\text{iso/ID}}$ (1.4%):

•
$$\sigma_{\rm iso}^{\rm c_B}({\rm relative}) = \delta_{\rm iso}^{\rm eff} * (c_{\rm B} + 1)/c_{\rm B}$$

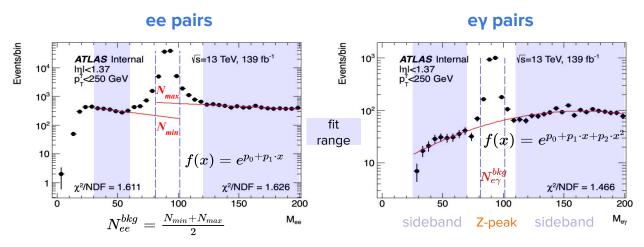
•
$$\sigma_{\text{ID}}^{\text{c}_{\text{C}}}(\text{relative}) = \delta_{\text{ID}}^{\text{eff}} * (c_{\text{C}} + 1)/c_{\text{C}}$$

•
$$\sigma_{\rm iso}^{\rm c_D}({\rm relative}) = \delta_{\rm iso}^{\rm eff} * (c_{\rm B} + 1)/c_{\rm B}$$

$$\delta^{\text{eff}}_{\text{iso/ID}} = 0.013$$

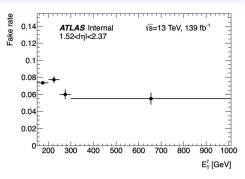
Total systematics: 26%.

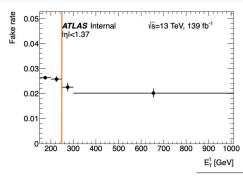
•
$$\sigma_{\text{ID}}^{c_{\text{D}}}(\text{relative}) = \delta_{\text{ID}}^{\text{eff}} * (c_{\text{C}} + 1)/c_{\text{C}}$$

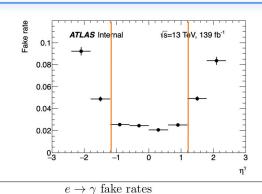

e→γ misID background: Z-peak method

Source: W(Iv), top and tt processes.

Estimation procedure:


1. estimating e $ightharpoonup \gamma$ fake rate as $rate_{e
ightarrow \gamma} = rac{(N_{e\gamma} - N_{bkg})}{(N_{ee} - N_{bkg})}$,


where N_{ee} , $N_{e\gamma}$ – number of ee and e γ events in Z-peak mass window (M_Z – 10 GeV, M_Z + 10 GeV), N_{bkg} – background in Z-peak mass window extrapolated from sideband with exponential pol1 or pol2 fit.



- 2. building e-probe CR (SR with electron instead of photon).
- 3. scaling data distributions from e-probe CR on fake rate.

e→γ misID background: uncertainties

 $150 < E_T^{\gamma} < 250 \text{ GeV}$

 $0.0240 \pm 0.0006 \pm 0.0009$

Systematics:

Since $e \rightarrow \gamma$ fake rate depends on $\eta \ \mu \ p_{\tau}$, it is estimated in three regions.

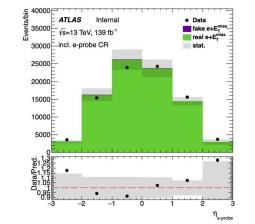
1. Fake-rate:

- Z-peak mass window variation (varies from 0.5% to 0.9%).
- Background under Z-peak evaluation (varies from 2.2% to 10.4%).
- Difference between "real fake rate" in Z(ee) MC and tag-and-probe method performed on Z(ee) MC (varies from 1.13% to 19.4%).

Total systematics on the fake-rate: 22%.

2. E-probe CR:

Impurity of the region (0.46%).


Total syst. on the background yield: 6%.

Contamination is determined as:

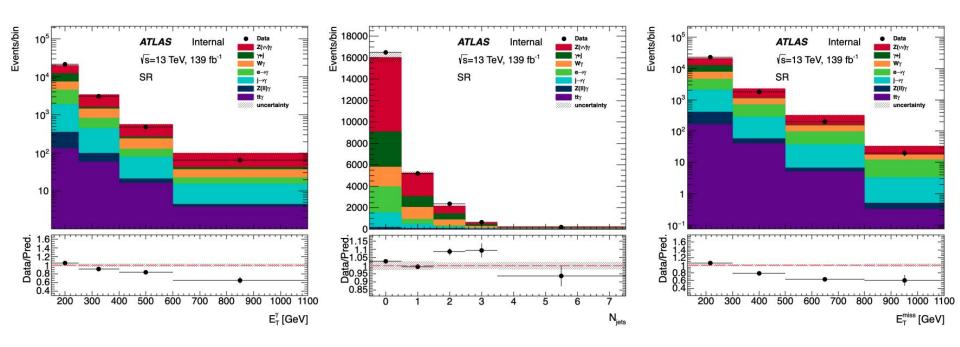
$$rac{ ext{fake } e{+}E_{ ext{T}}^{ ext{miss}}}{ ext{real } e{+}E_{ ext{T}}^{ ext{miss}}}.$$

 $0 < |\eta| < 1.37$

 $1.52 < |\eta| < 2.37$

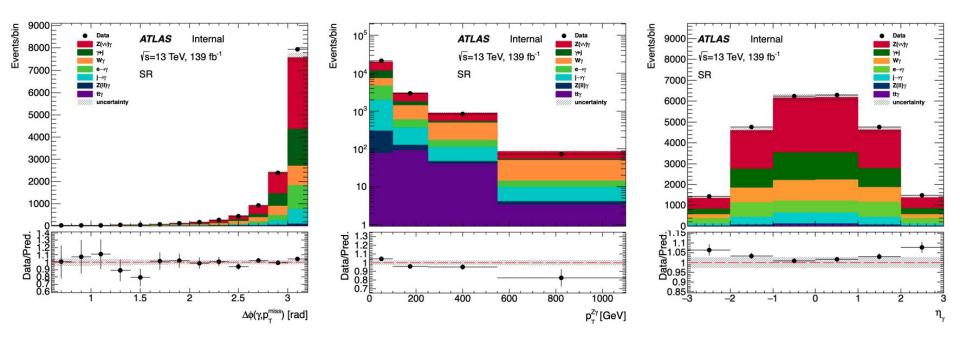
 $0.0696 \pm 0.0018 \pm 0.0072$

 $E_T^{\gamma} > 250 \text{ GeV}$


 $0.0205 \pm 0.0013 \pm 0.0045$

<u>Total background</u> (e-probe region scaled by fake-rate): $3070 \pm 12 \pm 187$.

jet→E_T^{miss} misID background: estimation strategy


- Packground originating from γ +jets processes is significantly reduced by applying selections on $\mathbf{E_{\tau}}^{\text{miss}}$ and $\mathbf{E_{\tau}}^{\text{miss}}$ -significance.
- For now, **MC simulation** is used to estimate this background.
- The MC normalisation is estimated from the CR constructed in **low-E_T**^{miss}-significance range (E_T^{miss} -significance < 11) with E_T^{miss} selection relaxed to E_T^{miss} > 100 GeV.
- Normalisation coefficient is equal to **0.66**, which is close to the normalisation factor obtained using 2D-sideband method in $Z(vv)\gamma$ EWK analysis (0.68).
- The plan is to estimate this background for each bin using **2D-sideband method**: E_{T}^{miss} -significance and other discriminative variable (e.g. $\Delta \phi[\gamma, p_{T}^{miss}]$ or $p_{T}^{SoftTerm}$) will be used to construct the sidebands.

Control plots

For jet $\Rightarrow \gamma$ bkg, the shape is taken from Z(vv) γ QCD MC. γ +jet bkg has 0.66 normalisation. $e \Rightarrow \gamma$ bkg: DD. The total uncertainty includes the statistical uncertainty for all bkgs, while for jet $\Rightarrow \gamma$ and $e \Rightarrow \gamma$ bkgs there is also the systematic uncertainty.

Control plots

For jet $\Rightarrow \gamma$ bkg, the shape is taken from Z(vv) γ QCD MC. γ +jet bkg has 0.66 normalisation. $e \Rightarrow \gamma$ bkg: DD. The total uncertainty includes the statistical uncertainty for all bkgs, while for jet $\Rightarrow \gamma$ and $e \Rightarrow \gamma$ bkgs there is also the systematic uncertainty.

Summary

- Several steps of the inclusive Z(νν̄)γ Run2 analysis are already done: selection optimisation, data-driven estimation of jet→γ, e→γ and (preliminary) E_T^{miss}→jet misID backgrounds, control plots.
- Plans:
 - Re-optimise the SR after adding $Z(vv)\gamma$ and $W\gamma$ EWK samples + $W(\tau v)$ samples with separation of lepton and hadron channels.
 - Estimate:
 - E_T^{miss}→jet background using 2D-sideband method.
 - pile-up background (expected to be negligible).
 - Wγ background.
 - Uncertainties.
 - Cross-section measurements.
 - Limits on aTGCs.
 - EB request till the end of the year.

Back-up

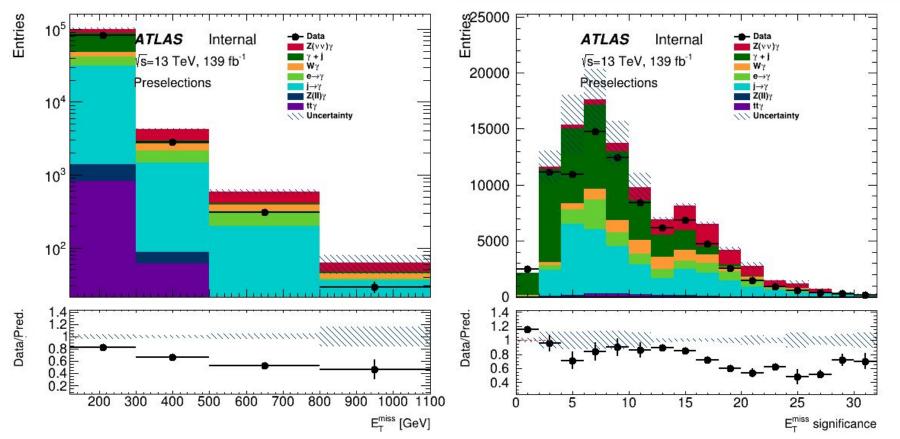
Object selections

Photon selection:

 $E_T^{\gamma} > 10$ GeV, $|\eta| < 2.37$, crack region excluded, cluster quality cut, ambiguity cut, tight ID, FixedCutTightCaloOnly isolation, $\Delta R(\gamma, e/\mu) < 0.4$

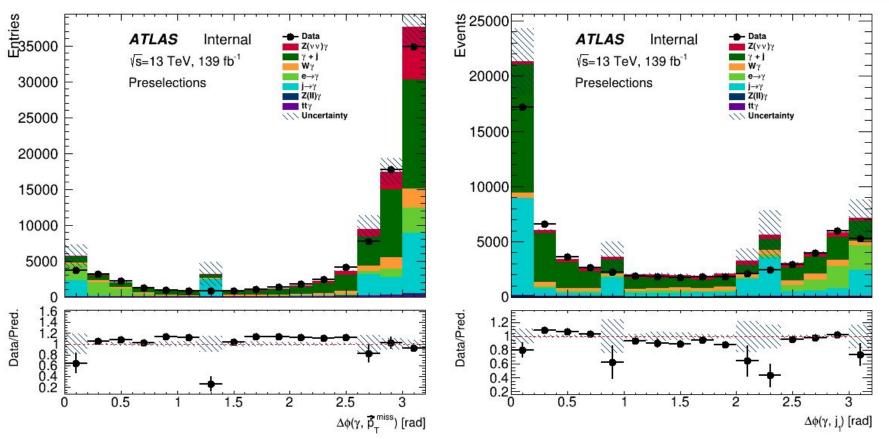
Electron selection:

 $p_T > 4.5$ GeV, $|\eta| < 2.47$, crack region excluded, loose ID, $\Delta R(e,\mu) < 0.1$

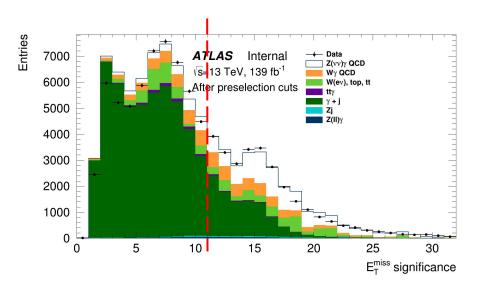

Muon selection:

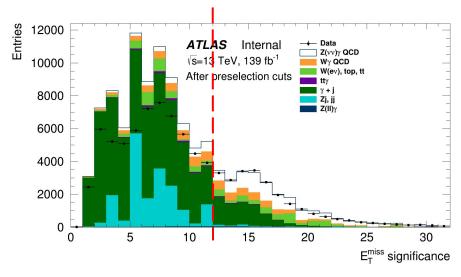
 $p_T > 4$ GeV, $|\eta| < 2.47$, crack region excluded, loose ID, $|z_0^* \sin \theta| < 0.5$ mm, d_0 signif. < 3

Jet selection:


 E_T > 50 GeV, $|\eta|$ < 4.5, AntiKt4EMPFlowJets, tight JVT, $\Delta R(\text{jet,e/}\mu/\gamma)$ < 0.4

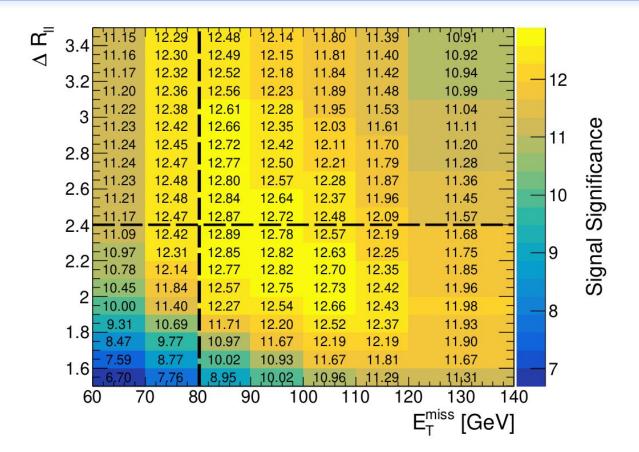
Selection optimisation: distributions


For jet $\rightarrow \gamma$ bkg, the shape is taken from Z(vv)+jets and multi-jet MC. γ +jet bkg has 0.66 normalisation. $e \rightarrow \gamma$ bkg: W(ev), W(τv), top, tt MC.

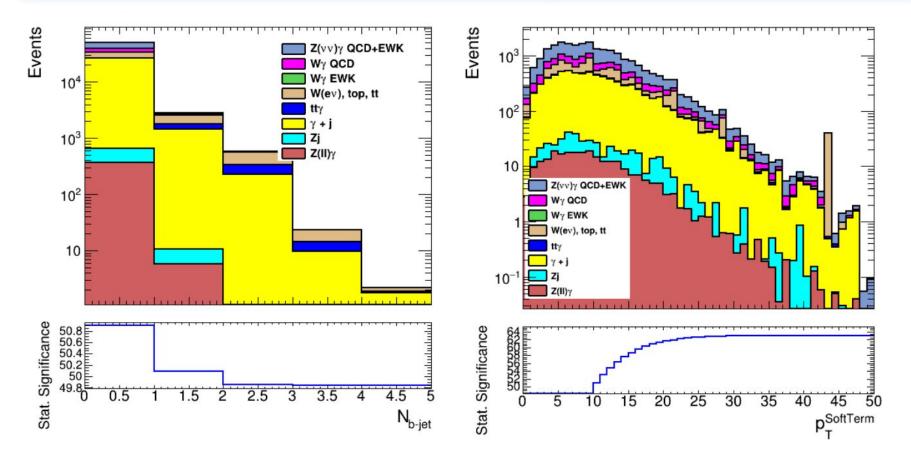

Selection optimisation: distributions

For jet $\rightarrow \gamma$ bkg, the shape is taken from Z(vv)+jets and multi-jet MC. γ +jet bkg has 0.66 normalisation. $e \rightarrow \gamma$ bkg: W(ev), W(τ v), top, tt MC.

Selection optimisation: multi-jet problematic normalisation



without multi-jet samples


with multi-jet samples

Multi-jet samples are not used for the optimisation procedure due to their problematic normalisation.

Multivariate method of optimisation (2D example)

Selection optimisation: $N_{b\text{-jet}}$ and $p_{T}^{SoftTerm}$

Selection optimisation: event yields

	FixedCutTight	Fixe	dCutTightCalo(Only
Variable	W/O N	1ultiJet	With	With
	,		MultiJet	MultiJet
E_T^{miss} signif.	>11	>11	>12	<u> </u>
$\Delta\phi(E_T^{miss},\gamma)$	>0.6	>0.7	>0.7	_
$\Delta\phi(E_T^{miss},j_1)$	>0.4	>0.4	>0.4	
E_T^{miss} , GeV	>130	>130	>130	13—13
		Signal		
$Z(\nu\nu)\gamma\;QCD$	9752 ±8	9840 ±8	9355 ±8	12380 ±9
$Z(\nu\nu)\gamma$ EWK	0 ±0	0 ±0	0 ±0	0 ±0
Total signal	9752 ±8	9840 ±8	9355 ±8	12380 ±9
	st 100	Background	00 00 00 00 00 00 00 00 00 00 00 00 00	
$W\gamma$ QCD	3610 ±21	3645 ±22	3265 ±21	7456 ±30
$W\gamma$ EWK	0 ±0	0 ±0	0 ±0	0 ±0
tt, top, $W(e\nu)$	3128 ±447	3463 ±518	3328 ±512	9039 ±636
$tt\gamma$	210 ±3	213 ±3	165 ±3	888 ±6
γ +j	7501 ±78	7598 ±78	6261 ±71	59162
				±203
Zj	213 ±16	315 \pm 20	295 ±19	486 ±23
$Z(II)\gamma$	266 ±4	270 ±4	242 ±4	608 ±7
MultiJet		1243.91 \pm	0.6+-0.4	18532±4645
		1243.02		
Total bkg.	14928±455	15504±525	13558±518	96172
				±4693
Stat. signif.	62.1±0.6	61 .8±0.6	61 .8±0.6	37.6 ±

Selection optimisation: isolation checks

FixedCutTightCaloOnly

 9840 ± 8

 60.3 ± 1.5

16749 ± 1349

 12381 ± 9

 37.6 ± 0.8

96172 ± 4693

 $+ E_{\tau}^{miss} > 130$

 9355 ± 8

 61.8 ± 0.7

multivariate₂₂

method

13558 ± 518

Multijet	_	+	_	+	_	+	+	+
	+ E _T ^{miss} sign >	11	+ E _T ^{miss} sign > *	11	+ E _T ^{miss} sign > '	11		+ E _T ^{miss} sign > 12
Calaatiana	$+ \Delta \varphi(\gamma, E_{T}^{miss}) $	> 0.6	$+ \Delta \varphi(\gamma, E_{T}^{miss}) $	> 0.6	$+ \Delta \varphi(\gamma, E_T^{miss}) $	> 0.7		+ $ \Delta \varphi(\gamma, E_T^{\text{miss}}) > $ 0.7
Selections	$+ \Delta \varphi(j_1, E_T^{miss}) $	> 0.4	$+ \Delta \varphi(j_1, E_T^{\text{miss}}) >$	> 0.4	+ Δφ(j ₁ ,E _T ^{miss}) >	> 0.4	_	+ $ \Delta \varphi(j_1, E_T^{miss}) > 0.4$

 9843 ± 8

16764 ± 1349

 60.3 ± 1.5

 $+ E_{\tau}^{miss} > 130$

15505 ± 525

 61.8 ± 0.6

multivariate

method

 9840 ± 8

 $+ E_{\tau}^{miss} > 130$

15520 ± 525

 61.8 ± 0.6

 9843 ± 8

 $+ |\Delta \varphi(\gamma, E_{T}^{\text{miss}})| > 0.6$ $+ |\Delta \varphi(j_{1}, E_{T}^{\text{miss}})| > 0.4$ $+ E_{T}^{\text{miss}} > 130$

9752 ± 8

16172 ± 1324

 60.6 ± 1.5

 9752 ± 8

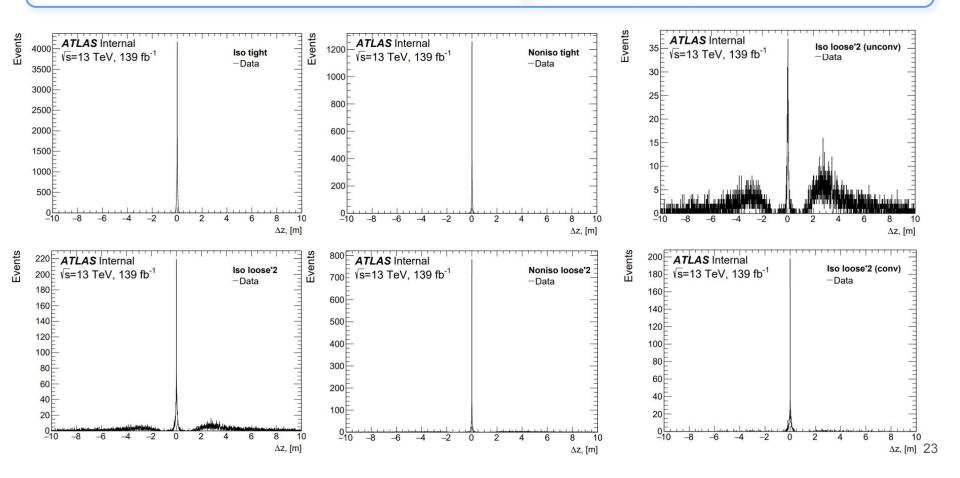
14928 ± 455

multivariate

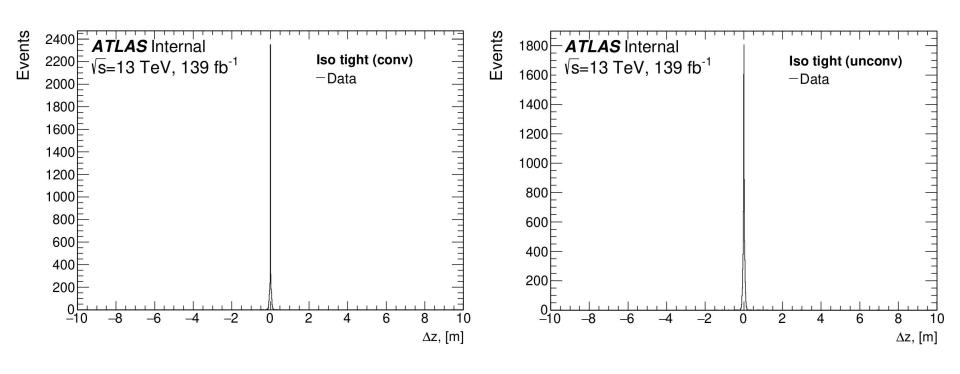
method

 62.1 ± 0.6

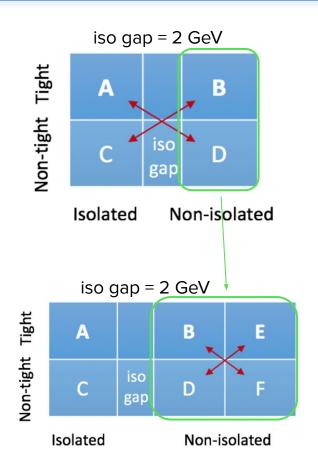
FixedCutTight


Isolation

Signal


Background

Significance


Beam-induced background (BIB)

Beam-induced background (BIB)

jet→y misID background: regions definition

FixedCutTightCaloOnly:

A: tight, E_T^{cone40} - 0.022 p_T^{γ} < 2.45 [GeV]

B: tight, 2.45 + gap $< E_T^{\text{cone40}} - 0.022 p_T^{\gamma} [\text{GeV}]$

C: non-tight, E_T^{cone40} - 0.022 p_T^{γ} < 2.45 [GeV]

D: non-tight, $2.45 + \text{gap} < E_{\tau}^{\text{cone}40} - 0.022 p_{\tau}^{\gamma} [\text{GeV}]$

Non-tight: at least one of the cuts on the following variables should fail in these:

· loose'2: We3. Fride

• loose'3: w_{s3} , F_{side} , ΔE

· loose'4: Ws3. Fride, \DE, Eratio

· loose'5: Ws3, Fside, \DE, Eratio, Wtot

FixedCutTightCaloOnly:

B-E: tight, $4.45 < E_T^{cone40} - 0.022 p_T^{\gamma} < 9.95 [GeV]$ **D-F:** non-tight, $4.45 < E_T^{cone40} - 0.022 p_T^{\gamma} < 9.95 [GeV]$ **E:** tight, $9.95 < E_T^{cone40} - 0.022 p_T^{\gamma} [GeV]$

F: non-tight, $9.95 < E_{\tau}^{\text{cone}40} - 0.022 p_{\tau}^{\gamma} [\text{GeV}]$

jet→γ misID background: isolation working point

Isolation: FixedCutTight, without upper cut

FixedCutTight, (w/o upper cut)						
MC						
	loose'2 loose'3 loose'4 loose'					
R-factor	1.05 ± 0.15	1.14 ± 0.15	1.19 ± 0.14	1.39 ± 0.17		

Cut	loose'2	loose'3	loose'4	loose'5
7.95	1.6 ± 0.3	1.5 ± 0.3	1.4 ± 0.3	1.4 ± 0.3
8.45	1.5 ± 0.3	1.5 ± 0.3	1.4 ± 0.3	1.4 ± 0.3
8.95	1.4 ± 0.3	1.3 ± 0.3	1.3 ± 0.3	1.3 ± 0.3
9.45	1.6 ± 0.4	1.5 ± 0.4	1.5 ± 0.4	1.5 ± 0.3
9.95	1.6 ± 0.4	1.5 ± 0.4	1.7 ± 0.4	1.6 ± 0.4

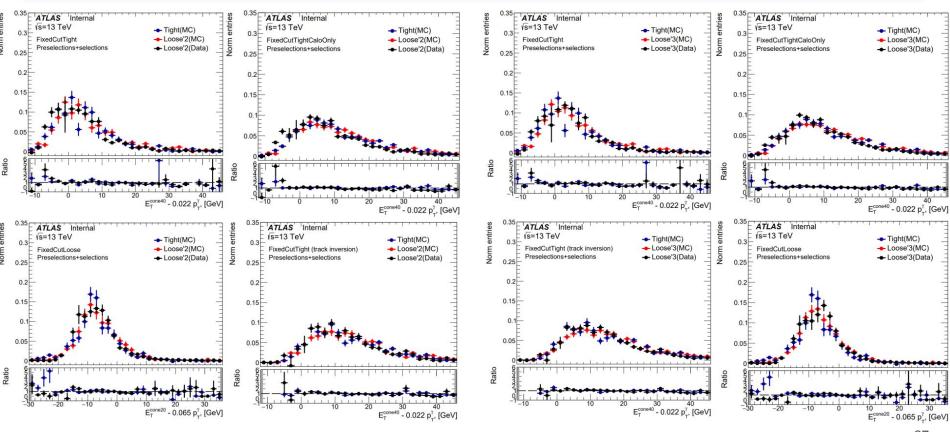
Isolation: FixedCutTight, with upper cut 25.45 GeV

${f FixedCutTight}, ({f upper\ cut}={f 25.45\ GeV})$						
MC						
	loose'2	loose'3	loose'4	loose'5		
R-factor	1.06 ± 0.15	1.15 ± 0.16	1.21 ± 0.15	1.40 ± 0.17		

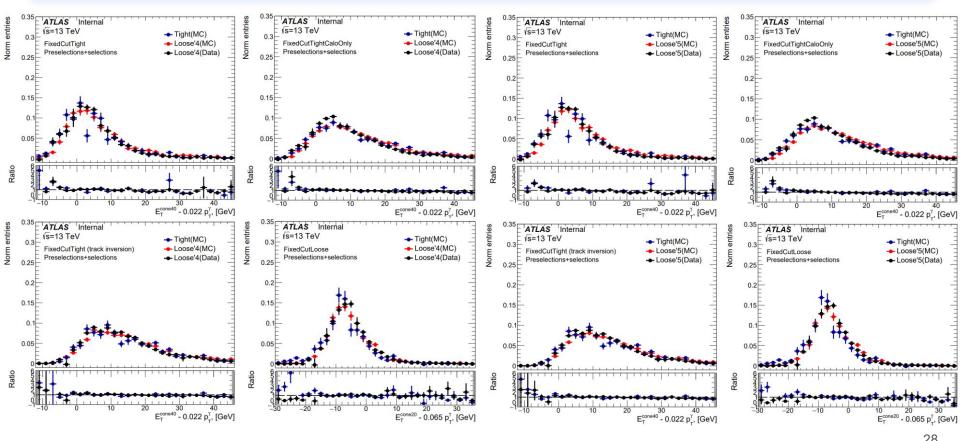
Data-driven					
Cut	loose'2	loose'3	loose'4	loose'5	
8.45	1.1 ± 0.2	1.1 ± 0.2	1.03 ± 0.18	1.06 ± 0.18	
8.95	0.96 ± 0.18	0.97 ± 0.17	0.96 ± 0.17	0.97 ± 0.16	
9.05	1.01 ± 0.18	1.02 ± 0.18	1.01 ± 0.18	1.01 ± 0.17	
9.45	1.08 ± 0.19	1.10 ± 0.19	1.10 ± 0.19	1.12 ± 0.18	
9.95	1.03 ± 0.18	1.03 ± 0.18	1.16 ± 0.19	1.16 ± 0.19	
10.45	1.1 ± 0.2	1.1 ± 0.2	1.2 ± 0.2	1.2 ± 0.2	
10.95	1.2 ± 0.2	1.2 ± 0.2	1.3 ± 0.2	1.3 ± 0.2	

Isolation: FixedCutTight and track inversion

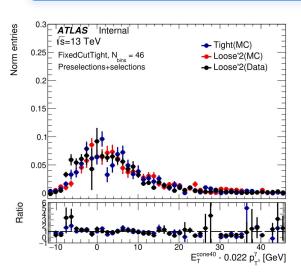
FixedCutTight (inversion), (w/o upper cut)						
	MC					
	loose'2	loose'3	loose'4	loose'5		
R-factor	1.01 ± 0.12	1.15 ± 0.12	1.29 ± 0.13	1.58 ± 0.16		

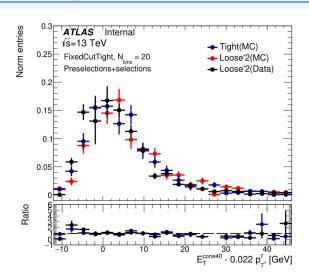

Data-driven						
Cut loose'2		loose'3	loose'4	loose'5		
9.45	1.09 ± 0.13	1.15 ± 0.13	1.09 ± 0.11	1.13 ± 0.11		
9.95	1.08 ± 0.12	1.16 ± 0.12	1.11 ± 0.11	1.13 ± 0.10		
10.20	1.07 ± 0.12	1.13 ± 0.12	1.09 ± 0.10	1.12 ± 0.10		
10.45	1.09 ± 0.12	1.14 ± 0.12	1.10 ± 0.10	1.14 ± 0.10		
10.95	1.18 ± 0.13	1.23 ± 0.12	1.17 ± 0.10	1.20 ± 0.10		

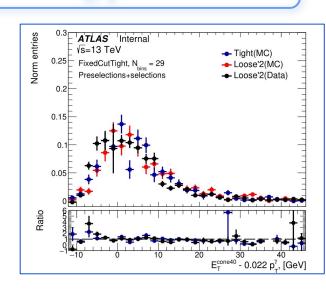
Isolation: FixedCutTightCaloOnly, without upper cut


FixedCutTightCaloOnly, (w/o upper cut)					
MC					
	loose'2	loose'3	loose'4	loose'5	
R-factor	1.06 ± 0.10	1.14 ± 0.11	1.22 ± 0.10	1.40 ± 0.12	

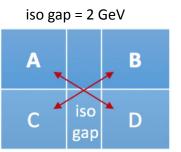
Data-driven						
Cut	loose'2	loose'3	loose'4	loose'5		
9.45	1.08 ± 0.11	1.14 ± 0.11	1.12 ± 0.10	1.13 ± 0.10		
9.95	1.07 ± 0.10	1.13 ± 0.10	1.15 ± 0.10	1.15 ± 0.10		
10.45	1.09 ± 0.10	1.14 ± 0.10	1.14 ± 0.10	1.15 ± 0.10		
10.95	1.18 ± 0.11	1.23 ± 0.11	1.21 ± 0.10	1.22 ± 0.10		
11.45	1.23 ± 0.11	1.27 ± 0.11	1.22 ± 0.10	1.22 ± 0.10		


jet → γ misID background: isolation working point




jet → γ misID background: isolation working point

jet → γ misID background: isolation working point

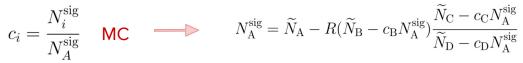

For blue point in 20 bin: 0.0144971 +- 0.00474881 For black point in 20 bin: 0.00177925 +- 0.00131052 For red point in 20 bin: 0.00257787 +- 0.00238254 Ratio in 20 bin: 5.62366 +- 5.51433

$$\Delta(rac{x}{y}) = \sqrt{(rac{\Delta x}{y})^2 + (rac{x\Delta y}{y^2})^2}$$

For blue point in 28 bin: -0.00022147 +- 0.00140026 For black point in 28 bin: 0.00342036 +- 0.0014042 For red point in 28 bin: 0.000896954 +- 0.00102111

Ratio in 28 bin: -0.246913 +- 1.58623 (blue point), 3.81331 +- 4.6148 (black point)

jet→y misID background: estimation technique


Tight

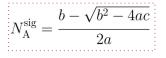
Non-tight

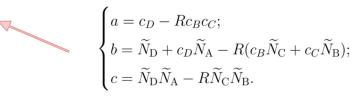
The signal leakage parameters:

$$\widetilde{N}_i = N_i - N_i^{\text{bkg}}$$

$$c_i = rac{N_i^{
m sig}}{N_A^{
m sig}}$$
 MC

Non-isolated Isolated

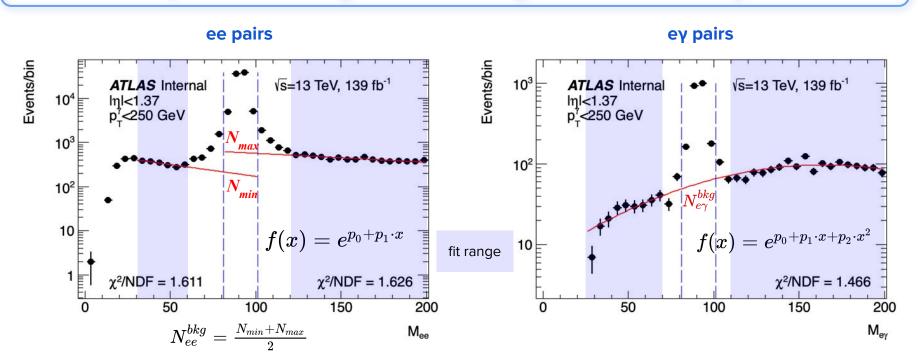

The number of events arising in each of the regions:

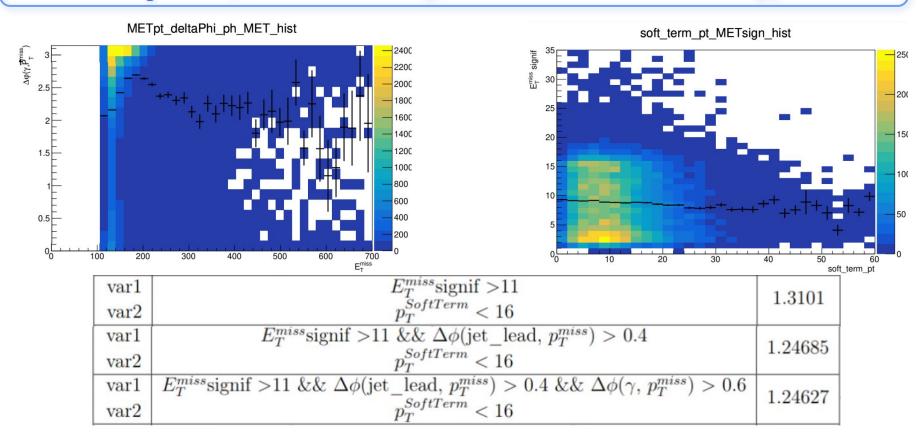

$$N_A = N_A^{\text{sig}} + N_A^{\text{bkg}} + N_A^{\text{jet} \to \gamma};$$

$$N_B = c_{\rm B} N_A^{\rm sig} + N_B^{\rm bkg} + N_B^{\rm jet \to \gamma};$$

$$N_C = c_{\mathcal{C}} N_A^{\text{sig}} + N_C^{\text{bkg}} + N_C^{\text{jet} \to \gamma};$$

$$N_D = c_{\rm D} N_A^{\rm sig} + N_D^{\rm bkg} + N_D^{\rm jet \to \gamma};$$

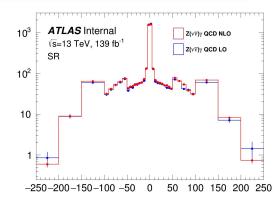


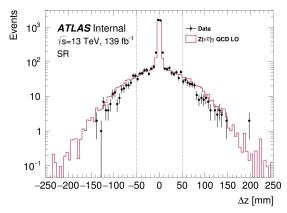

	Data	$W\gamma$ QCD	$W\gamma$ EWK	$W(e\nu), top, tt$	$tt\gamma$	$\gamma + \mathrm{jet}$	$Z(ll)\gamma$
A	24946 ± 158	3655 ± 22	145.9 ± 0.7	3070 ± 12	213 ± 3	5016 ± 52	270 ± 4
В	5163 ± 72	337 ± 8	14.1 ± 0.2	140.9 ± 0.5	21.9 ± 1.0	161 ± 9	15.1 ± 1.3
\mathbf{C}	1586 ± 40	32 ± 2	1.42 ± 0.07	41.92 ± 0.14	2.2 ± 0.3	36 ± 4	2.4 ± 0.4
D	2805 ± 53	3.0 ± 0.6	0.21 ± 0.03	0 ± 0	0.82 ± 0.19	0.8 ± 0.4	0.19 ± 0.11

$e \rightarrow \gamma$ misID background: background under Z peak

- Systematics on bkg estimation under Z peak are evaluated by variation of N^{bkg} values in ee and ey pairs.
- N_{min} and N_{max} values are used as variations of N_{ee}^{bkg} . In $e\gamma$ pairs extrapolation function parameters are varied by their statistical uncertainties one by one. Resulting integral of the function is used for variation of N_{ev}^{bkg} .
- Sum in quadrature of the largest variations of N_{ev}^{bkg} and N_{ee}^{bkg} is taken as systematics.

$E_T^{miss} \rightarrow jet misID background: estimation strategy$




Pile-up background

- In full Run2 Z(II)γ inclusive analysis it was found that events with Z and photon from different primary vertices have non-negligible probability (up to 5% of the total event yield)
- Since our final state assumes high energetic photons, E_T^{miss}, probability of such events should be much smaller.
- Fraction of pile-up background is calculated as:

$$f_{\rm PU} = \frac{N_{\rm data, \, 2\text{-track Si}}^{|\Delta z| > 50mm} - N_{\rm single \, pp, \, 2\text{-track Si}}^{|\Delta z| > 50mm}}{N_{\rm data, \, 2\text{-track Si}} \times 0.32}, \quad N_{\rm single \, pp, \, 2\text{-track Si}}^{|\Delta z| > 50mm} = SF_1 \times SF_2 \times N_{\rm MC, \, 2\text{-track Si}}^{|\Delta z| > 50mm}$$

- SF₁ is equal to the ratio of events in data to events in Sherpa MC sample near $|\Delta z|$ around zero (4.61±0.07)
- SF $_2$ normalization factor taking into account the mismodelling in the tails of $|\Delta z|$ distribution (it was calculated for Sherpa Z γ QCD by Z(II) γ inclusive team using events with FSR photons) (1.5±0.3)

