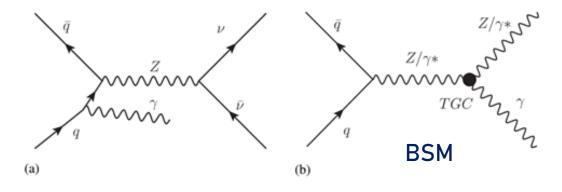
The estimation methods of the background induced by the misidentification of a jet as a photon in *pp* collisions at \sqrt{s} = 13 TeV with the ATLAS Detector

K. Kazakova, E. Soldatov, D. Pyatiizbyantseva

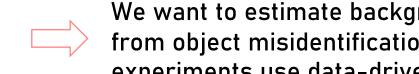
on behalf of the ZnunuGamma group

MEPhl@Atlas meeting 09/12/2022


Motivation and goals

Motivation:

- To measure the parameters of the Standard Model (SM) to very high precision;
- The search of new physics predicted by the beyond SM (BSM) theories;


Precise measurements of triple and quartic gauge

couplings sensitive to BSM physics. One of the sensitive processes is $Z(vv)\gamma$ process.

Goals:

- To calculate integral and differential in $E_{\rm T}^{\gamma}$, $N_{\rm jets}$, $p_{\rm T}^{\rm miss}$, $\Delta \phi(\gamma, p_{\rm T}^{\rm miss})$, $p_{\rm T}(Z\gamma)$, η_{γ} . cross-sections and compare the results with the theory predictions;
- To obtain the strongest up-to-date limits on anomalous neutral triple gauge-boson couplings (aTGCs).

We want to estimate backgrounds as accurate as possible but background processes emerging from object misidentification are not well-modeled in Monte-Carlo. All analyses at the LHC experiments use data-driven methods to solve this issue.

The backgrounds and the phase space definition

Signal: Z(vv)γ

Backgrounds:

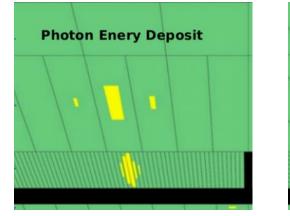
- γ + jets via MC \rightarrow ABCD method based on $E_{
 m T}^{
 m miss}$ significance and additional variable
- ^{35%} (or slice method?);
- 26% W(→lv)γ fit to data in additional CR based on N_{lep} (shape from MC);
- 20% $e \rightarrow \gamma$ fake-rate estimation using Z-peak (tag-n-probe) method;
- 14% *jet* $\rightarrow \gamma$ ABCD method based on photon ID and isolation and slice method;
- 1.9% Z(ll)γ via MC;
- 1.6% ttγ via MC.

• FixedCutLoose isolation working point is chosen.

<u>Preselections</u>

Preselections	Cut value
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 130 { m ~GeV}$
$E_{ m T}^\gamma$	$> 150 { m ~GeV}$
Number of photons	$N_\gamma=1$
Lepton veto	$N_e=0,~N_\mu=0$

Selections


Selections	Cut value
$E_{\rm T}^{\rm miss}$ significance	> 11
$ \Delta\phi(E_{ m T}^{ m miss},\gamma) $	> 0.7
$ \Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}},j_{1}) $	> 0.4

K. Kazakova (NRNU MEPhl)

$jet \rightarrow \gamma \ background$

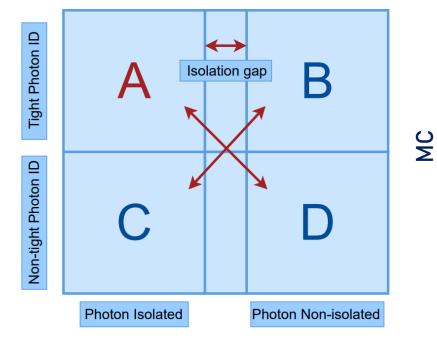
The background induced by the misidentification of a jet as a photon is studied in this analysis.

π0 Energy Deposit

ABCD method for *jet* $\rightarrow \gamma$:

the phase space is splitted into 4 regions based on the

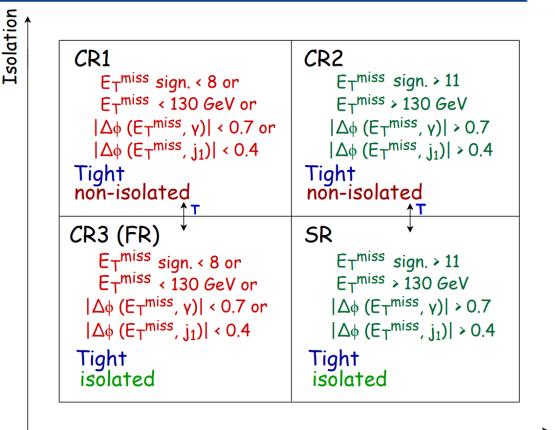
- identification (*tight* or *loose'*) and isolation (*isolated* or *non-isolated*) criteria for photons;
- the main assumption is the absence of correlation between
- identification and isolation criteria.


The estimate of *jet* $\rightarrow \gamma$ events in signal region A derived by ABCD method is 2100 \pm 100 \pm 300

A large uncertainty is observed. Thus, we have a motivation to estimate $jet \rightarrow \gamma$ with other methods.

Hadronic jets in which neutral mesons carry a significant fraction of energy may be misidentified as isolated photons.

the SR will be contaminated with $jet \rightarrow \gamma$

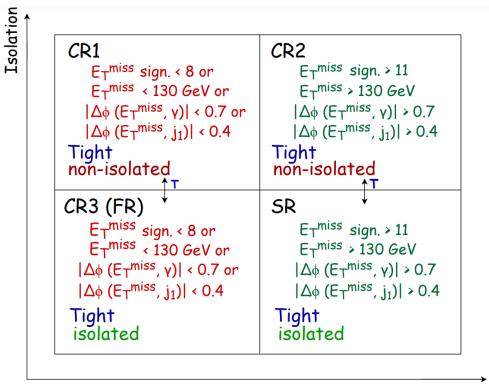

More details in back-up

26/10/2022

Estimation techniques of the slice method I

<u>Strategy:</u>

- To split the phase space into 4 orthogonal regions based on kinematic cuts and isolation. The fit region (FR) is the kinematically inverted signal region (SR). Events in the FR have a leading photon candidate that is isolated. Events in the SR pass all signal kinematic selections.
- 2. The CR2 is a region, where events have a leading photon candidate that is not isolated. Events in the CR2 pass all signal kinematic selections. The CR1 is the kinematically inverted CR2.
- 3. Photons in all four regions pass the tight selection criteria.


Kinematic cuts

- 4. The normalized fit is performed in the FR, where the *jet* $\rightarrow \gamma$ process used for the fit is derived from CR1.
- 5. Photon is required to pass $p_T^{\text{cone20}}/p_T^{\gamma} < 0.05$ track isolation in isolated regions. To increase the statistics in non-isolated regions the inverted track isolation $p_T^{\text{cone20}}/p_T^{\gamma} > 0.05$ is applied.

Estimation techniques of the slice method II

- 6. The normalized fit can be performed for different variables in the phase-space region with inverted cuts on these variables.
- 7. To study the dependence of the result on the isolation criteria, control regions CR1 and CR2 are split into successive intervals by the isolation variable, instead of a single integrated anti-isolated region.
- 8. In this way, the number of $jet \rightarrow \gamma$ background events for a given isolation slice *i* can be estimated as follows:

 $N_{\text{CR1(i)}}^{jet \to \gamma} = N_{\text{CR1(i)}}^{\text{data}} - N_{\text{CR1(i)}}^{Z(\nu\bar{\nu})\gamma} - N_{\text{CR1(i)}}^{\text{bkg}}$

Kinematic cuts

9. The normalized fit is performed in the FR. Thus, the total number of events in the FR estimated from non-isolated slice of the CR1 is given by:

$$N_{\text{FR}(i)}^{\text{data}} = \alpha \cdot (N_{\text{FR}(i)}^{Z(\nu\bar{\nu})\gamma} + N_{\text{FR}(i)}^{\text{bkg}}) + N_{\text{FR}(i)}^{jet \to \gamma}$$

10. The fitting parameter $T_{(i)}$ gives the estimated number of $jet \rightarrow \gamma$ events in the FR: $N_{FR(i)}^{jet \rightarrow \gamma} \approx T_{(i)} \cdot N_{CR1(i)}^{jet \rightarrow \gamma}$

Estimation techniques of the slice method III

Isolation

- 11. In this study, a parameter α is taken to be equal to 1. The fit parameter $T_{(i)}$ is derived for each slice and kinematic variable.
- 12. Finally, the fitted $jet \rightarrow \gamma$ yield is extrapolated to the SR. The estimate for each slice and kinematic variable is determined by the equation:

$$N_{\text{SR(i)}}^{jet \rightarrow \gamma} = T_{(i)} \cdot (N_{\text{CR2(i)}}^{\text{data}} - N_{\text{CR2(i)}}^{Z(\nu\bar{\nu})\gamma} - N_{\text{CR2(i)}}^{\text{bkg}})$$

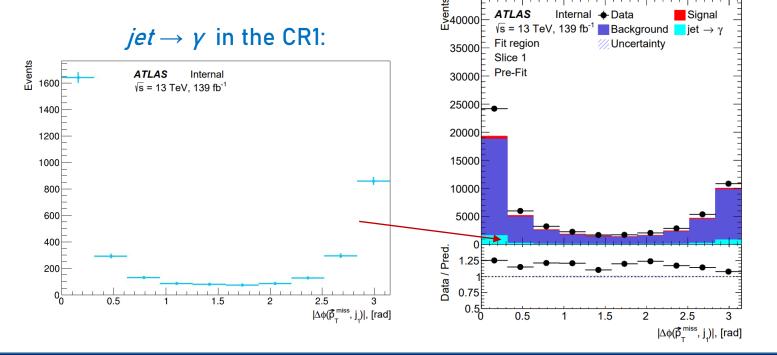
FixedCutLoose isolation working point is chosen.
 Isolation working point is defined as:

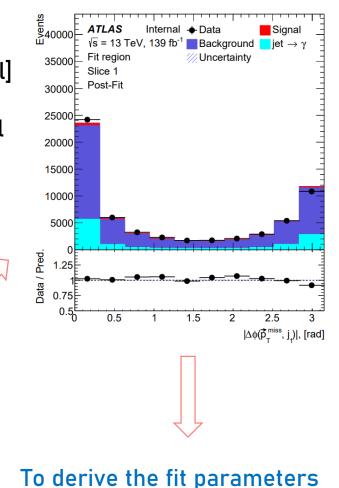
 $E_{\rm T}^{\rm cone20}/p_{\rm T}^{\gamma} < 0.065$

CR1	CR2
ET ^{miss} sign. < 8 or	ET ^{miss} sign. > 11
ET ^{miss} < 130 GeV or	E _T ^{miss} > 130 GeV
$ \Delta \phi (E_T^{miss}, \gamma) < 0.7 \text{ or}$	Δφ (E _T ^{miss} , γ) > 0.7
Δφ (E⊤ ^{miss} , j ₁) < 0.4	∆φ (E _T ^{miss} , j ₁) > 0.4
Tight	Tight
non-isolated	non-isolated
CR3 (FR)	SR
Et ^{miss} sign < 8 or	ET ^{miss} sign. > 11
ET ^{miss} sign. < 8 or ET ^{miss} < 130 GeV or	ET ^{miss} > 130 GeV
$ \Delta \phi (E_T^{miss}, \gamma) < 0.7 \text{ or}$	$ \Delta \phi (E_T^{miss}, \gamma) > 0.7$
$ \Delta \phi (E_T^{miss}, j_1) < 0.4$	$ \Delta \phi (E_T^{miss}, j_1) > 0.4$
Tight	Tight
isolated	isolated

Kinematic cuts

Five isolation slices are chosen: [0.065, 0.08, 0.095, 0.115, 0.14]


Normalized fit


- The fit was performed for 4 variables: $E_{\rm T}^{\rm miss}$, $E_{\rm T}^{\rm miss}$ significance, $|\Delta\phi(\gamma, \vec{p}_{\rm T}^{\rm miss})|$ and $|\Delta\phi(j_1, \vec{p}_{\rm T}^{\rm miss})|$
- The fitting parameter T is derived from the fit for each slice and variable.

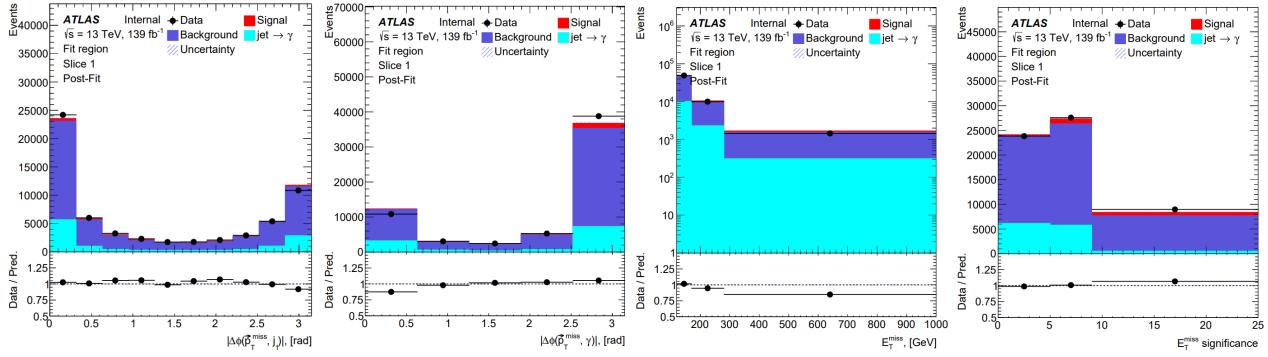
Strategy:

1) To derive the distribution of the *jet* $\rightarrow \gamma$ in the CR1 from [data – other bkg. – signal] in this region;

2) To add derived $jet \rightarrow \gamma$ distribution to the FR. Thus, in the FR we have data, signal and other bkg., that are derived in FR, and $jet \rightarrow \gamma$, which is derived in the CR1 3) To perform the normalized fit

T for each slice

K. Kazakova (NRNU MEPhl)

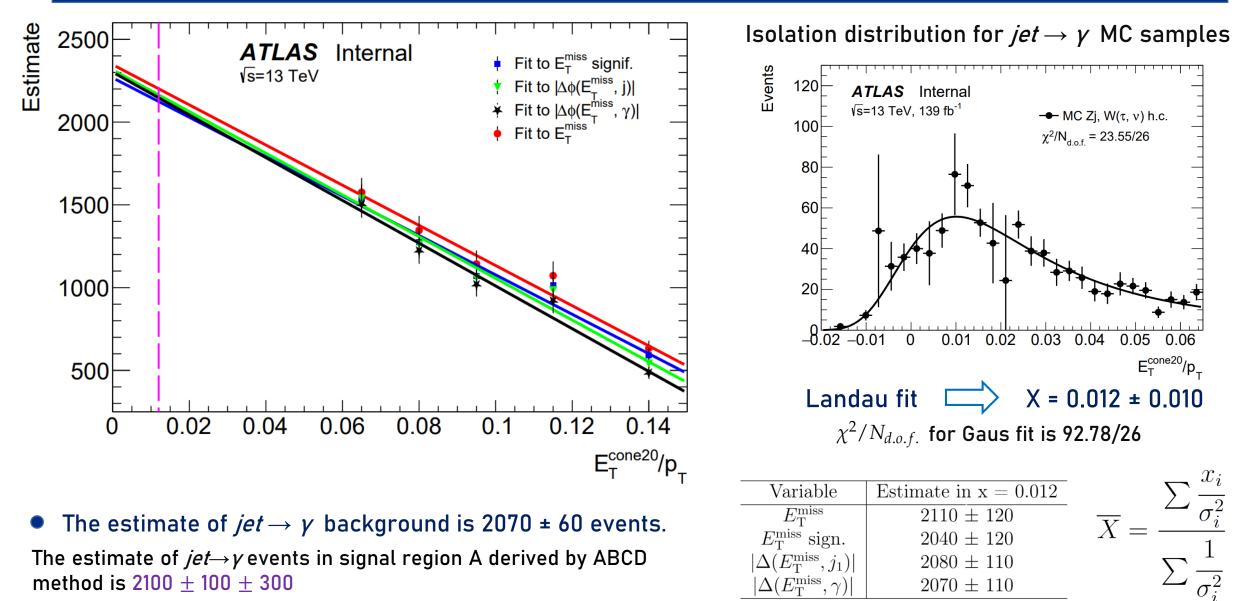

Normalized fit

- The normalized fit was performed for 4 variables: $E_{\rm T}^{\rm miss}$, $E_{\rm T}^{\rm miss}$ significance, $|\Delta\phi(\gamma, \vec{p}_{\rm T}^{\rm miss})|$ and $|\Delta\phi(j_1, \vec{p}_{\rm T}^{\rm miss})|$
- The fitting parameter T is derived from the fit for each slice and variable.

The likelihood function:

$$\mathcal{L}(N_i^{\text{data}}|T) = \prod_{i=1}^{N_{\text{bins}}} \text{Pois}(N_i^{\text{data}}|N_i^{\text{sig}} + N_i^{\text{bkg}} + T \cdot N_i^{jet \to \gamma})$$

The results of the fit for slice 1 [0.065, 0.08]:


Pre-fits and post-fits for different variables are performed in back-up

Result of the fit for $Z\gamma$ QCD Sherpa generator:

Slice	$T_1, E_{\mathrm{T}}^{\mathrm{miss}}$	$T_2, E_{\rm T}^{\rm miss}$ sign	$ T_3, \Delta(E_{\mathrm{T}}^{\mathrm{miss}}, j_1) $	$T_4, \Delta(E_{\mathrm{T}}^{\mathrm{miss}}, \gamma) $	
1	3.50 ± 0.08	3.42 ± 0.08	3.42 ± 0.08	3.33 ± 0.07	
2	4.14 ± 0.09	3.94 ± 0.09	3.89 ± 0.09	3.76 ± 0.08	The fit
3	4.30 ± 0.10	4.04 ± 0.09	3.99 ± 0.09	3.82 ± 0.09	parameters $T_{(i)}$
4	5.24 ± 0.12	4.97 ± 0.12	4.82 ± 0.11	4.48 ± 0.10	. (1)
5	1.90 ± 0.04	1.77 ± 0.04	1.62 ± 0.04	1.44 ± 0.04	
		$ \begin{array}{c c} \text{Slice} & \text{Obs} \\ \hline 1 & \\ 2 & \\ 3 & \\ 4 & \\ 5 & \\ \end{array} $	$ \frac{\text{served } N_{CR2(i)}^{jet \to \gamma}}{444 \pm 22} \\ 320 \pm 19 \\ 265 \pm 17 \\ 207 \pm 15 \\ 363 \pm 22 $	Observed <i>je</i> the CR2	$et \rightarrow \gamma$ events in

Slice	$N_{SR(i)}^{jet \to \gamma}, E_{\mathrm{T}}^{\mathrm{miss}}$	$N_{SR(i)}^{jet \to \gamma}, E_{\rm T}^{\rm miss}$ sign.	$N_{SR(i)}^{jet \to \gamma}, \Delta(E_{\rm T}^{\rm miss}, j_1) $	$N_{SR(i)}^{jet \to \gamma}, \Delta(E_{\mathrm{T}}^{\mathrm{miss}}, \gamma) $	
1	1555 ± 83	1518 ± 82	1521 ± 82	1484 ± 78	<i>jet</i> $\rightarrow \gamma$ events
2	1323 ± 83	1258 ± 79	1242 ± 78	1201 ± 75	in the SR for
3	1137 ± 77	1068 ± 73	1056 ± 71	1010 ± 68	each slice
4	1084 ± 82	1027 ± 78	996 ± 75	926 ± 70	
5	688 ± 44	643 ± 42	588 ± 38	524 ± 34	

Linear extrapolation

The sources of the systematics

Systematic uncertainties come from:

- The uncertainty in the choice of the extrapolation target for the isolation scan, estimated by changing the isolation target by $\pm 1\sigma$;
- The uncertainty comes from different generators.
- The uncertainty comes from the choice of the variable. (34 events)

Variable	Estimate in $x = 0.002$
$E_{\mathrm{T}}^{\mathrm{miss}}$	2220 ± 120
$E_{\rm T}^{\rm miss}$ sign.	2150 ± 120
$ \Delta(E_{\mathrm{T}}^{\mathrm{miss}}, j_1) $	2200 ± 110
$ \Delta(E_{\mathrm{T}}^{\mathrm{miss}},\gamma) $	2190 ± 110

2188 events, δ = 114 events

Variable	$Z\gamma$ QCD MadGraph
$E_{\mathrm{T}}^{\mathrm{miss}}$	2200 ± 120
$E_{\rm T}^{\rm miss}$ sign.	2130 ± 120
$ \Delta(E_{\mathrm{T}}^{\mathrm{miss}}, j_1) $	2170 ± 120
$ \Delta(E_{\mathrm{T}}^{\mathrm{miss}},\gamma) $	2150 ± 110

2159 events, δ = 85 events

- Total systematic uncertainty is 150 events.
- Thus, the estimate of *jet* $\rightarrow \gamma$ events in signal region A by slice method is 2070 ± 60 ± 150.
- The estimate of *jet* $\rightarrow \gamma$ events in signal region A derived by ABCD method is 2100 \pm 100 \pm 300.
- The final estimates for different methods coincide within the uncertainty.

Likelihood-based approach I

The main idea: to fit signal and other backgrounds distributions except $jet \rightarrow \gamma$ to data in all ABCD regions

The essence of the method is to perform a fit of the likelihood function, which is defined as:

$$L(N_{ji}|f_{F_{ji}}, f_{N_j}) = \prod_{j=A}^{B,C,D} \prod_{i=1}^{N_{bins}} \text{Pois}(N_{ji}|\nu_{b_{ji}} + \nu_{\gamma_{ji}}f_{F_{ji}} + \nu_{s_{ji}}f_{N_j})$$

where model parameters are defined as:

- N_{ji} the number of the data events in each region and bin;
- f_{N_i} varying parameter for signal in each region;
- $f_{F_{ii}}$ varying parameter for estimated background in each region and bin;
- $\mathcal{V}_{b_{ji}}$ the number of events in MC backgrounds (excl. *jet* $\rightarrow \gamma$);
- $\mathcal{V}_{S_{ji}}$ the number of signal events;
- $\mathcal{V}_{\gamma_{ji}}$ the number of estimated background (*jet* \rightarrow γ) events.

MEPhI@Atlas

Likelihood-based approach II

• Likelihood based approach is constructed with the assumption that R = 1 for each bin in the distribution for $jet \rightarrow \gamma$ background:

$$1 = \frac{\nu_{\gamma_{Ai}} f_{F_{Ai}} \cdot \nu_{\gamma_{Di}} f_{F_{Di}}}{\nu_{\gamma_{Bi}} f_{F_{Bi}} \cdot \nu_{\gamma_{Ci}} f_{F_{Ci}}}$$

To avoid the redundancy of the model the following limitation is applied:

$$f_{F_{Bi}} = f_{F_{Di}}$$

The search of maximum of likelihood function is performed with **RooFit** toolkit:

$$\frac{\partial L}{\partial f_{F_{ji}}} = 0, \quad \frac{\partial L}{\partial f_{N_j}} = 0$$

In SR: $N_A^{jet \to \gamma} = \nu_{\gamma_{Ai}} f_{F_{Ai}}$

This way the number of $jet \rightarrow \gamma$ events in SR:

The proposed method significantly reduces the number of steps to be done to obtain the estimate compared to ABCD-method

MC samples

The likelihood-based approach is applied to associated Zy production with Z-boson decaying

• into neutrinos (Z \rightarrow vv). One of the backgrounds comes from γ +j events. Zj events come from jet $\rightarrow \gamma$ misidentification

The processes considered in the analysis are generated in

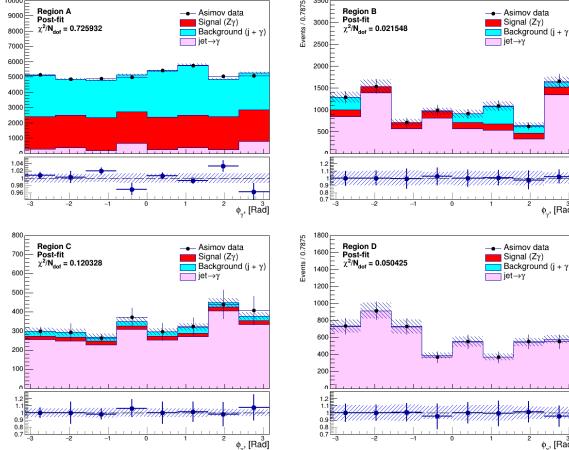
- MadGraph5 MC event generator using pp collisions with \sqrt{s}
 - = 13 TeV and the integrated luminosity of 139 fb⁻¹
- Pythia8 is used for parton showering and hadronization, Delphes is used for detector simulation.

Thus the study uses Asimov data which is not real data but the sum of MC generated processes, the likelihood-based estimate of jet $\rightarrow \gamma$ background and MC prediction should coincide. It is so-called «closure test».

Selection	Cut value
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 130 GeV
E_{T}^{γ}	> 150 GeV
Number of tight photons	$N_{\gamma} = 1$
Lepton veto	$N_e=0,N_\mu=0$

Event selection criteria for Zγ candidate events

100


The fit was performed for ϕ_{γ} and η_{γ} :

The final estimate is chosen based on the $\chi^2/N_{d.o.f.}$ value in the SR and R-factor.

NL.	ϕ_{γ} Estimate <i>R</i> -factor $\chi^2/N_{d.o.f.}$			η_{γ}		
1 v bins	Estimate	R-factor	$\chi^2/N_{d.o.f.}$	Estimate	R-factor	$\chi^2/N_{d.o.f.}$
6	3255^{+111}_{-106}	1.04 ± 0.03	0.45	3238^{+129}_{-125}	1.03 ± 0.03	0.39
7	2906^{+110}_{-108}	0.94 ± 0.03	0.73	3243^{+126}_{-122}	1.04 ± 0.02	0.55
8	3179^{+117}_{-108}	1.04 ± 0.03	0.73	3276^{+141}_{-137}	1.04 ± 0.02	0.26
9	3119^{+130}_{-127}	1.01 ± 0.03	0.62	3251^{+133}_{-130}	1.05 ± 0.02	0.50

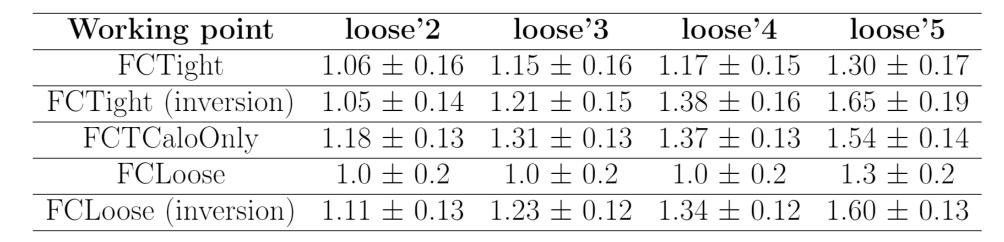
The systematic uncertainties were derived by

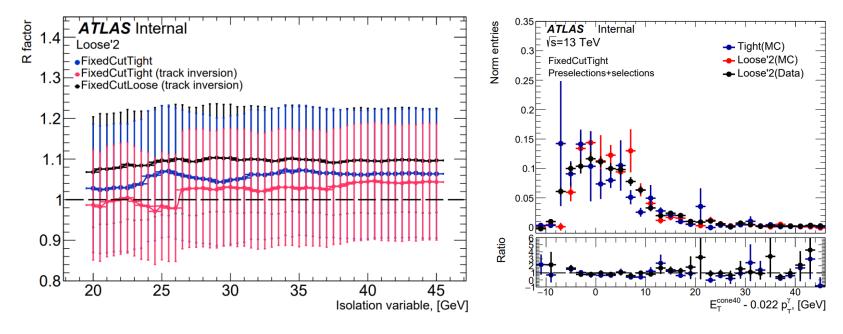
- variating the value of isolation gap by $\pm \sigma$ in nonisolated control regions.
- The estimate of jet $\rightarrow \gamma$ events in SR obtained by ¢ ٍ, [Rad] likelihood method is $N_A^{jet \rightarrow \gamma} = 3179^{+117}_{-108} \pm 69$ for ϕ_{γ} and $N_A^{jet \rightarrow \gamma} = 3243^{+126}_{-122} \pm 48$ for η_{γ}
- The MC prediction is $N_A^{jet \rightarrow \gamma} = 3093 \pm 178$ events

¢ ٍ, [Rad]

Summary

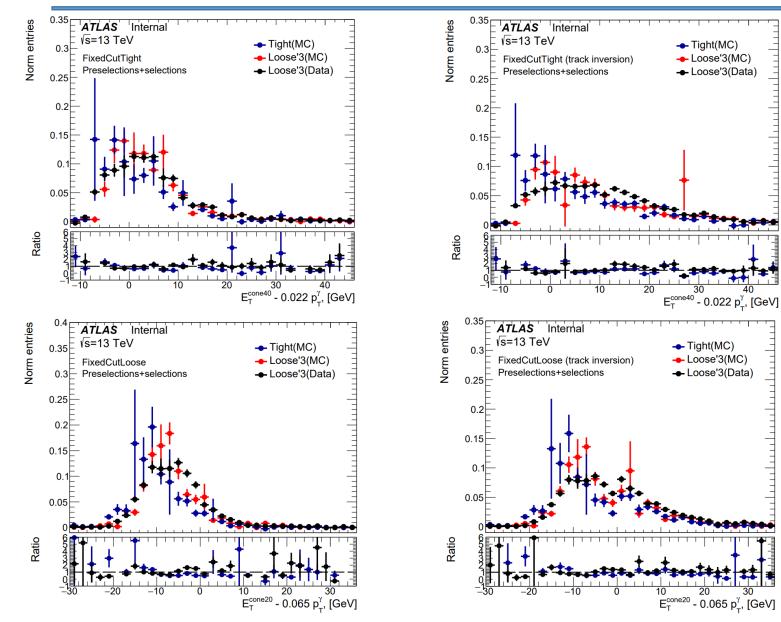
The estimate of $jet \rightarrow \gamma$ events in signal region A is derived by ABCD method. The estimate is 2100 \pm 100 \pm 300 events.

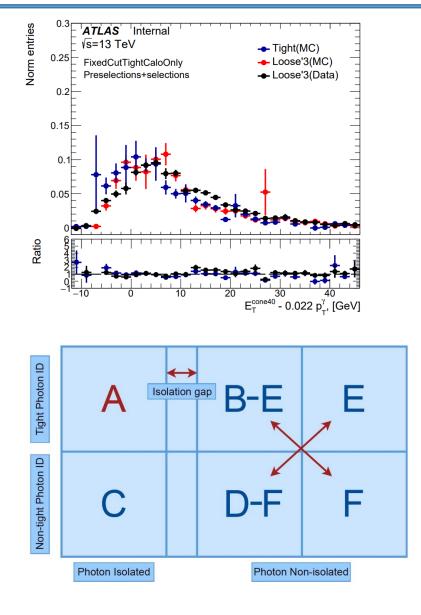

The alternative slice method is performed for $jet \rightarrow \gamma$ estimation process. The estimate of $jet \rightarrow \gamma$ events in signal region A derived by slice method is 2070 ± 60 ± 150. The final estimates for the methods coincide within the uncertainty.


The alternative likelihood-based method of estimation of $jet \rightarrow \gamma$ events was developed. It uses the information about the shape of the distributions in the regions and provides a much simpler way to obtain the estimate of the number of background events.

Thank you for your attention!

R factor Zj and W(τν) in MC




 $E_{\rm T}^{\rm miss} \text{ significance } =$ $= |\vec{E}_{\rm T}^{\rm miss}|^2 / (\sigma_{\rm L}^2 (1 - \rho_{\rm LT}^2))$

 $\sigma_{\rm L}$ is the total variance in the longitudinal direction to the $E_{\rm T}^{\rm miss}$ $ho_{\rm LT}$ is the correlation factor of the longitudinal L and transverse T measurement

K. Kazakova (NRNU MEPhl)

Isolation distributions (loose'3)

K. Kazakova (NRNU MEPhl)

MEPhI@Atlas

20

R factor in data

MEPhI@Atlas

FixedCutLoose (inverted), w/o upper cut							
	MC						
	loose'2 loose'3 loose'4						
R-factor	1.11 ± 0.13	1.23 ± 0.12	1.34 ± 0.12	1.60 ± 0.13			
		Data-drive	1				
Cut	loose'2	loose'3	loose'4	loose'5			
4.5	0.97 ± 0.10	1.05 ± 0.10	1.05 ± 0.09	1.06 ± 0.08			
4.6	1.00 ± 0.10	1.08 ± 0.10	1.06 ± 0.09	1.07 ± 0.08			
4.75	1.03 ± 0.10	1.05 ± 0.10	1.07 ± 0.09	1.09 ± 0.08			
9.5	1.04 ± 0.09	1.03 ± 0.08	0.98 ± 0.07	0.97 ± 0.07			
10.0	1.04 ± 0.09	1.03 ± 0.08	0.98 ± 0.07	0.98 ± 0.07			
10.5	1.02 ± 0.09	1.02 ± 0.08	0.95 ± 0.07	0.96 ± 0.07			
11.0	1.06 ± 0.09	1.02 ± 0.08	0.97 ± 0.07	0.96 ± 0.07			
	FivedCutTi	ghtCaloOnly	\mathbf{w} / \mathbf{o} upper				
	Tixcucutii	MC	, w/o upper	cut			
	loose'2	loose'3	loose'4	loose'5			
R-factor	1.18 ± 0.13	1.31 ± 0.13	1.37 ± 0.13	1.54 ± 0.14			
		Data-driver	1				
Cut	loose'2	loose'3	loose'4	loose'5			
9.45	1.15 ± 0.07	1.21 ± 0.06	1.20 ± 0.06	1.23 ± 0.06			
9.95	1.14 ± 0.06	1.20 ± 0.06	1.19 ± 0.06	1.22 ± 0.06			
10.45	1.15 ± 0.06	1.20 ± 0.06	1.19 ± 0.05	1.21 ± 0.05			
10.45	1.21 ± 0.07	1.26 ± 0.06	1.24 ± 0.06	1.26 ± 0.06			

FixedCutTight (inverted), w/o upper cut						
MC						
	loose'2	loose'3	loose'4	loose'5		
R-factor	1.05 ± 0.14	1.21 ± 0.15	1.38 ± 0.16	1.65 ± 0.19		
		Data-drive	n	·		
Cut	loose'2	loose'3	loose'4	loose'5		
9.45	1.10 ± 0.08	1.15 ± 0.07	1.11 ± 0.06	1.16 ± 0.06		
9.95	1.09 ± 0.07	1.15 ± 0.07	1.12 ± 0.06	1.16 ± 0.06		
10.20	1.08 ± 0.07	1.14 ± 0.07	1.11 ± 0.06	1.15 ± 0.06		
10.45	1.10 ± 0.07	1.15 ± 0.07	1.13 ± 0.06	1.17 ± 0.06		
	FixedCutTi	aht upper ci	-25.45.6			
	Incucutin	MC				
	loose'2	loose'3	loose'4	loose'5		
R-factor	1.07 ± 0.16	1.17 ± 0.17	1.18 ± 0.16	1.31 ± 0.17		
	I	Data-driver	1			
Cut	loose'2	loose'3	loose'4	loose'5		
8.45	1.15 ± 0.13	1.16 ± 0.12	1.16 ± 0.11	1.21 ± 0.11		
8.95	1.11 ± 0.13	1.11 ± 0.12	1.14 ± 0.11	1.17 ± 0.11		
9.45	1.19 ± 0.14	1.22 ± 0.13	1.27 ± 0.13	1.30 ± 0.12		
9.95	1.16 ± 0.14	1.17 ± 0.13	1.23 ± 0.12	1.28 ± 0.12		
10.45	1.19 ± 0.14	1.20 ± 0.14	1.22 ± 0.12	1.26 ± 0.12		
FixedCutLoose was chosen. In order to decrease syst.						

uncert. the loose'3 was chosen

K. Kazakova (NRNU MEPhl)

jet $\rightarrow \gamma$ background estimation (loose'3)

Event yields for the data and non-jet $\rightarrow \gamma$ background processes considered in the ABCD method

	Data	$W\gamma \ QCD$	$W\gamma EWK$	$e\to\gamma$	$tt\gamma$	$\gamma+{ m jet}$	$Z(ll)\gamma$
А	26523 ± 163	3936 ± 23	136.3 ± 0.7	3039 ± 12	234 ± 3	5262 ± 53	285 ± 5
В	1475 ± 38	52 ± 4	1.86 ± 0.08	8.95 ± 0.03	1.3 ± 0.2	0.6 ± 0.4	1.0 ± 0.6
С	2568 ± 51	60 ± 2	2.16 ± 0.09	61.4 ± 0.2	4.2 ± 0.4	76 ± 6	4.8 ± 0.5
D	1443 ± 38	2.7 ± 0.6	0.17 ± 0.02	0.0715 ± 0.0002	0.35 ± 0.13	0 ± 0	0 ± 0

$$N_{\rm A}^{\rm sig} = \widetilde{N}_{\rm A} - R(\widetilde{N}_{\rm B} - c_{\rm B}N_{\rm A}^{\rm sig}) \frac{\widetilde{N}_{\rm C} - c_{\rm C}N_{\rm A}^{\rm sig}}{\widetilde{N}_{\rm D} - c_{\rm D}N_{\rm A}^{\rm sig}}$$
$$N_{\rm A}^{\rm sig} = \frac{b - \sqrt{b^2 - 4ac}}{2a}$$

he signal	leakage	paramet	ters

(Isolation gap = 2GeV)				
c_B	0.00939 ± 0.00007			
c_C	0.01536 ± 0.00010			
c_D	0.00051 ± 0.00002			

s:	Event yields signal:		
	$Z(\nu\bar{\nu})\gamma$ QCD	$Z(\nu\bar{\nu})\gamma \ { m EWK}$	
Α	10513 ± 8	152.1 ± 0.3	
В	98.0 ± 0.8	2.14 ± 0.04	
С	161.5 ± 1.0	2.31 ± 0.04	
D	5.3 ± 0.2	0.135 ± 0.009	

$$\begin{aligned} a &= c_D - Rc_B c_C; \\ b &= \widetilde{N}_{\rm D} + c_D \widetilde{N}_{\rm A} - R(c_B \widetilde{N}_{\rm C} + c_C \widetilde{N}_{\rm B}); & \text{With F} \\ c &= \widetilde{N}_{\rm D} \widetilde{N}_{\rm A} - R \widetilde{N}_{\rm C} \widetilde{N}_{\rm B}. \end{aligned}$$

h R by data-driven

$$\frown$$
 $N_A^{jet
ightarrow \gamma} = \mathbf{2078^{+100}_{-97}}$

Systematic uncertainty I

Systematic uncertainties come from:

- non-tight definition and isolation gap choice. Variation for $\pm 1\sigma$ changes in data yield
- different generators
- imperfect photon iso/ID modeling

Different loose	prime a	and isolation	gap

-	
Central value (with R_{data})	2078
loose'2	+327
loose'4	-111
loose'5	-173
Iso gap $+0.25$ GeV	+48
Iso gap -0.35 GeV	+29

 $R_{
m data}^{
m iso~gap~+0.25~GeV} = 1.07 \pm 0.11$ $R_{
m data}^{
m iso~gap~-0.35~GeV} = 1.06 \pm 0.09$

Iso gap, GeV	N_B	N_D
-0.40	1524 ± 39	1488 ± 39
-0.35	1518 ± 39	1482 ± 38
-0.30	1513 ± 39	1477 ± 38
-0.25	1503 ± 39	1474 ± 38
-0.20	1497 ± 39	1468 ± 38
2.0	1475 ± 38	1443 ± 38
+0.15	1448 ± 38	1416 ± 38
+0.20	1443 ± 38	1404 ± 37
+0.25	1437 ± 38	1398 ± 37

The choice of loose prime 3 reduced the systematic uncertainty from 32% to 16%

K. Kazakova (NRNU MEPhl)

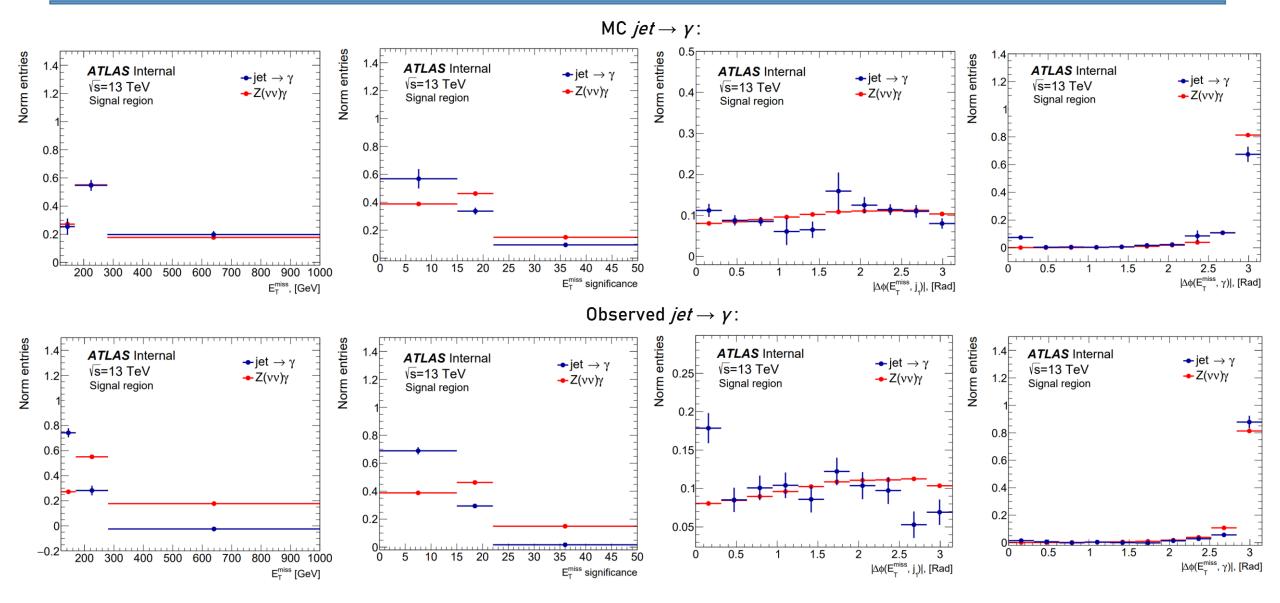
Systematic uncertainty II

Different generators:

	Different generators			
Signal leakage parameters	MadGraph+Pythia8, Sherpa 2.2	MadGraph+Pythia8, MadGraph+Pythia8	Relative deviation	
c_B	0.00939 ± 0.00007	0.0155 ± 0.0004	39%	
c_C	0.01536 ± 0.00010	0.0156 ± 0.0004	1.5%	
c_D	0.00051 ± 0.000028	0.00077 ± 0.00009	34%	
$jet \rightarrow \gamma$ est. (with R_{data})	2078	2061	0.8%	

Uncertainty coming from signal leakage is obtained $\delta = 0.8\%$

 $R_{\rm data}^{\rm diff.gen.} = 1.10 \pm 0.10$


Systematic uncertainty come from imperfect photon iso/ID modeling:

•
$$\sigma_{iso}^{c_B} = \delta_{iso}^{eff} \cdot (c_B + 1)/c_B$$

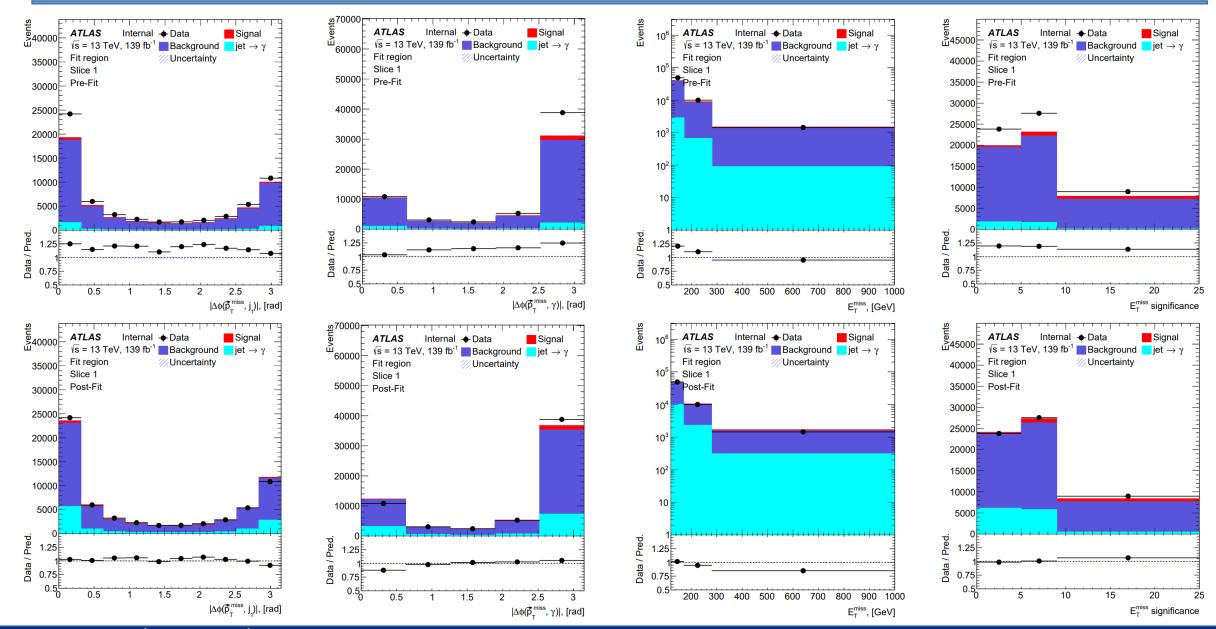
• $\sigma_{ID}^{c_C} = \delta_{ID}^{eff} \cdot (c_C + 1)/c_C$

• $\sigma_{iso}^{c_D} = \delta_{iso}^{eff} \cdot (c_B + 1)/c_B$

• $\sigma_{ID}^{c_D} = \delta_{ID}^{eff} \cdot (c_C + 1)/c_C$

• $\sigma_{ID}^{c_D} = \delta_{ID}^{eff} \cdot (c_C + 1)/c_C$

Total systematics: $\delta_{\text{Data}} = 16\%$ \bigcirc


0-

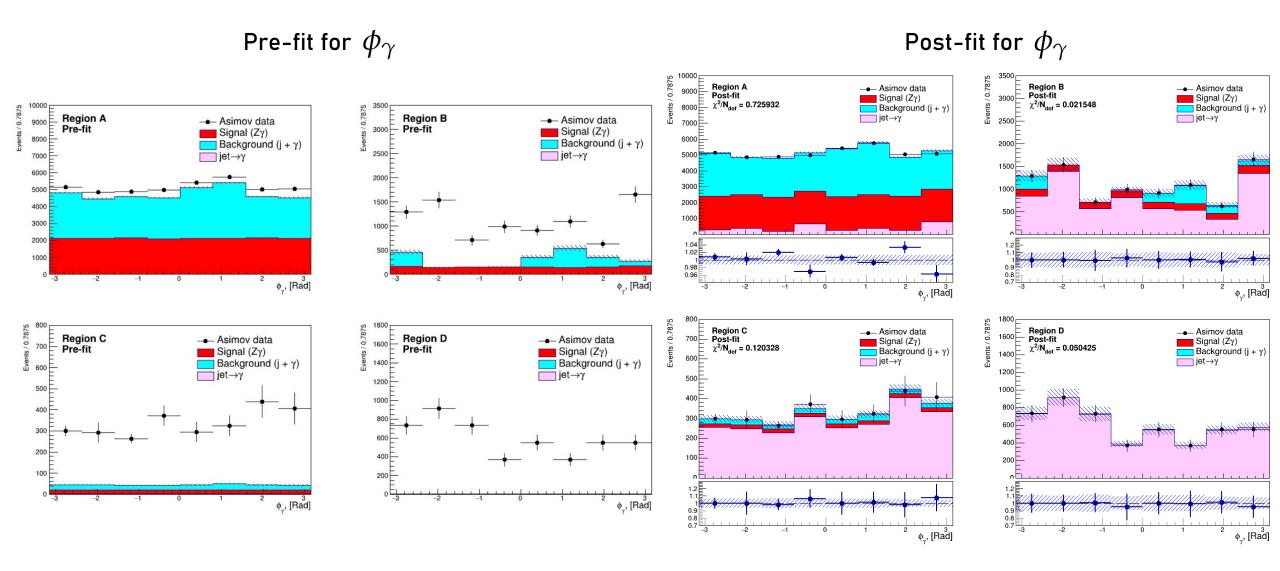
jet \rightarrow γ and Z γ comparison in the SR

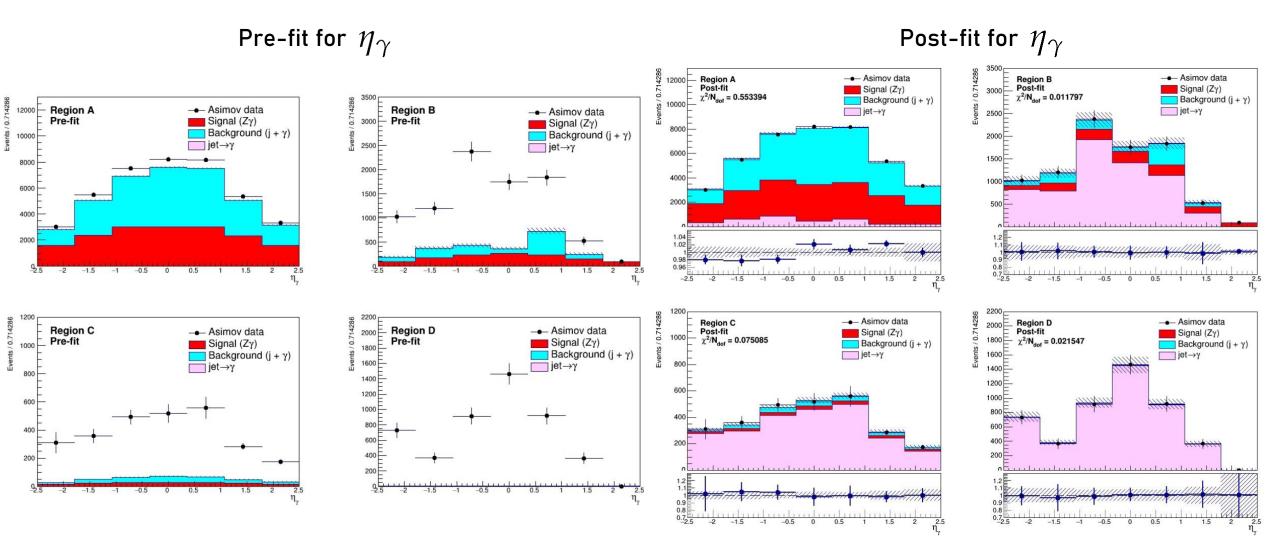
MEPhl@Atlas

Normalized fit. Slice 1

K. Kazakova (NRNU MEPhl)

MEPhI@Atlas


• Events in FR:


Data	Background (excl. $jet \to \gamma$)	Signal
60391 ± 246	45292 ± 128	2072 ± 3

	Slice	Data	Background (excl. $jet \to \gamma$)	Signal (Sherpa)	Signal (MadGraph)
	1	3730 ± 61	55 ± 5	5.70 ± 0.15	3.9 ± 0.5
Events in CR1	2	3158 ± 56	34 ± 3	4.93 ± 0.13	3.0 ± 0.4
for each slice:	3	3083 ± 56	55 ± 4	5.81 ± 0.14	4.3 ± 0.5
	4	2492 ± 50	30 ± 3	5.77 ± 0.15	3.4 ± 0.4
	5	6930 ± 83	169 ± 6	40.3 ± 0.4	27.2 ± 1.2

Slice	Data	Background (excl. $jet \to \gamma$)	Signal (Sherpa)	Signal (MadGraph)
1	463 ± 22	8.4 ± 0.9	10.1 ± 0.3	16.7 ± 1.3
2	337 ± 18	8 ± 3	9.3 ± 0.3	12.7 ± 1.2
3	286 ± 17	11.6 ± 0.9	9.7 ± 0.2	15.5 ± 1.3
4	223 ± 15	5.5 ± 0.9	10.9 ± 0.3	18.6 ± 1.3
5	471 ± 22	41 ± 2	67.0 ± 0.6	105 ± 3

Events in CR2 for each slice:

