ОЦЕНКА ВКЛАДА ПОГРЕШНОСТЕЙ ПРИ ИЗМЕРЕНИИ ПОЛЯРИЗАЦИОННЫХ УГЛОВЫХ КОЭФФИЦИЕНТОВ В ПРОЦЕССАХ ЛЕПТОННОГО РАСПАДА **W-БОЗОНА В ЭКСПЕРИМЕНТЕ ATLAS**

- Выполнил: Толкачёв Григорий Научный руководитель: Пономаренко Даниил
 - НИЯУ МИФИ, Москва 27 Января 2023 г.

Мотивация

Процесс Дрелла-Яна

Представление дифференциального сечения в виде разложения по гармоническим полиномам, умноженным на безразмерные угловые коэффициенты A_{0-7}

$$\frac{d\sigma}{dp_T^2 dy d\Omega^*} = \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_T^2 dy} \left[(1 + \cos^2 \theta) + \sum_{i=0}^7 P_i(\cos\theta, \phi) A_i(p_T, y_T) \right]$$

 $P_0(\cos\theta,\phi) = 1 - 3\cos^2(\theta)$ $P_3(\cos\theta, \phi) = 2\cos(\theta)$

- Цель работы: Оценка вклада погрешности ПФР. Оценка вклада погрешности связанных с эффективностью триггера, идентификацией, реконструкцией и изоляцией частиц для распределений поперечного импульса и быстроты W-бозона.
- Сравнение измерений с теоретическими расчетами позволяет оценить понимание данного процесса. Стимулирует дальнейшие вычисления в рамках пертурбативной теории КХД.
- Процессы Дрелла-Яна имеют достаточно простую сигнатуру

- На сегодняшний день имеется несколько результатов работ по измерению угловых поляризационных коэффициентов для лептонного распада W бозона
- Ни одна из работ не предоставляет полный набор измеренных угловых поляризационных коэффициентов коэффициентов А;
- Проблемы с полной реконструкции W бозона из-за нейтрино в конечном состоянии, который не регистрируется напрямую детектором ATLAS
- Согласно недавним исследованиям [1] полный набор угловых коэффициентов A_i можно измерить
 - [1] <u>https://arxiv.org/abs/1609.02536</u>

- $P_1(\cos\theta,\phi) = 2\sin^2(\theta)\cos(2\phi)$ $P_2(\cos\theta,\phi) = 2\sqrt{2}\sin^2(2\theta)\cos(\phi)$
- $P_4(\cos\theta,\phi) = 4\sqrt{2}\sin(\theta)\cos(\phi)$ $P_5(\cos\theta,\phi) = 2\sin^2(\theta)\cos(2\phi)$ $P_6(\cos\theta,\phi) = 2\sqrt{2}\sin^2(2\theta)\cos(\phi)$ $P_7(\cos\theta,\phi) = 4\sqrt{2}\sin(\theta)\cos(\phi)$

27 января 2023

 $A_2 =$

 $A_5 =$

Глобальный анализ КХД

Перевзвешивание набора ПФР

Для получения верхней или нижней вариации для собственного вектора, необходимо перевзвесить МК данные, которые имеют центральное значение набора ΠΦΡ

$$w = \frac{x_1 g_{i/B_1(x_1;Q^2)}}{x_1 f_{i/B_1(x_1;Q^2)}} \cdot \frac{x_2 g_{i/B_2(x_2;Q^2)}}{x_2 f_{i/B_2(x_2;Q^2)}}$$
(2)

Коэффициент перевзвешивания из старого ПФР $xf(x, Q^2)$ в новый ПФР $xg(x, Q^2)$ определяется по формуле 5.

В работе был использован набор ПФР СТ10, включает в себя 26 собственных векторов. Всего 2х26+1 = 53 элементов набора ПФР.

Оценка вклада погрешности ПФР

Сравнение ПФР и статистической погрешностей для A_0, A_2, A_3, A_4 в зависимости от поперечного импульса $p_T^{l
u}$

► Для всех коэффициентов A_i погрешность ПФР гораздо ниже чем статистическая погрешность.

Малый вклад погрешности ПФР является ожидаемым и связан с методикой измерения угловых коэффициентов

Толкачев Григорий

Оценка систематических погрешностей

Значение систематичких погрешностей в зависимости от поперечного импульса $p_T^{l
u}$ и быстроты $y^{l
u}$

- Величина всех погрешностей уменьшается с ростом поперечного импульса $p_T^{l
 u}$ и быстроты $y^{l
 u}$
- Наибольших вклад в полную погрешность вносит погрешность, связанная с эффективностью идентификации электронов
- Полная систематическая погрешность для $p_T^{l\nu}$ составляет 0.19%, а для

26 января 2023

Заключение

- стратегии глобального анализа КХД.
- библиотекой LHAPDF. Получен набор данных с новыми переменными, которые необходимы для перевзвешивания.
- погрешностей.

• Получены начальные сведения о партонных функциях, используемых в анализе данных на экспериментах БАК,

• Проведено ознакомление с библиотекой LHAPDF, с помощью которой в работе производится перевзвешивание наборов партонных функций. Выполнена настройка программного обеспечения Aidy для совместной работы с

• Получены значения угловых коэффициентов A_i и их погрешностей в каждом интервале поперечного импульса W бозона $p_T^{l
u}$ и быстроты $y^{l
u}$ с использованием псевдо-данных. Проведено сравнение ПФР и статистической

•Произведена оценка систематических погрешностей связанных с эффектностью триггера, идентификацией, реконструкцией, а также с изоляцией частиц в распределениях поперечного импульса $p_T^{l
u}$ и быстроты $y^{l
u}$.

Спасибо за внимание!

Дополнительные слайды

Толкачев Григорий

26 января 2023

Сравнение ПФР и статистической погрешностей для A_1, A_5, A_6, A_7, A_9 в зависимости от быстроты $y^{l u}$

Толкачёв Григорий

ATLAS Note ANA-STDM-2018-17-INT1 Measurement of the *p*_T spectrum of *W* and Z bosons produced in pp collisions at $\sqrt{s} = 5$ **TeV and 13 TeV in low-pileup runs**

27 января 2023

Матрица корреляции для всех собственных векторов набора ПФР используемых при измерении A_i в зависимости от $p_T^{l\nu}$

alpha PDF9	-0.5	-6.8	-24	-2.6	17	0.7	0.6	0.8	3	-22	0.7	-1.3	33	3	2.6	-5.8	17	-1.6	2.2	0.9	0.4	-0.5	-0 1	-6.9	-0.1	100	100
alpha PDE8	0.0	0.0	1.6	0.6	0.2	0.7	0.0	0.1	0.2	0.6	0.7	0.1	0.0	0.7	2.0	0.2	0.2	0.2	0.7	0.0	0.7	0.0	0.5	0.8	100	0.1	
		-0.5	-1.0	0.0	-0.2	0.5	0.2	-0.1	-0.2	-0.0	-0.8	-0.1	-0.2	0.7		0.2	-0.3	-0.2	-0.7	-0.1	-0.2	-0.4	0.5	0.8	100	-0.1	
alpha_PDF7	-0.4	2.9	11.6	-6.9	5.6	-2.2	-1.4	5	4.4	1	7.3	-1.7	6.8	-7.2	3.4	-3.2	6.8	1.6	11.9	5	2.5	0.3	-2	100	0.8	-6.9	
alpha_PDF6	-0.3		3.9	-1.8	0.9	-0.9	-0.4	-0.1	0.9	1.3	2	0.2	0.7	-1.7	0.3	-1	0.8	0.4	1.8	0.2	0.5	0.9	100	-2	0.5	-0.1	
alpha_PDF5		-0.6	-2.3	0.7	-0.1	0.6	0.2	-0.2	-0.2	-0.9	-0.9	-0.2	-0.1	1.3	0.2		-0.2	-0.5	-0.8	-0.1	-0.3	100	0.9	0.3	-0.4	-0.5	 80
alpha_PDF4	-0.3	-0.8	-2.6	1	-0.5	0.6	0.3	-0.4	-0.8	-0.9	-1.3	-0.4	-0.2	1.9	-0.1	-0.5	-0.8	-0.8	-2.1	-0.4	100	-0.3	0.5	2.5	-0.2	0.4	
alpha_PDF3	-0.1	-2.4	-3.6	1.3	-1.2	0.9	0.5	-1.8	-0.6	-0.5	-1.9	0.5	-1.7	3	-0.5	-0.5	-1.6	-1	-3.1	100	-0.4	-0.1	0.2	5	-0.1	0.9	
alpha_PDF26	-0.1	-4	-9.8	4.2	-3	2.2	1.2	-3.2	-2.1	-2.1	-5.1	0.5	-3.5	6.7	-1.2	0.2	-3.9	-2	100	-3.1	-2.1	-0.8	1.8	11.9	-0.7	2.2	
alpha_PDF25	-0.3	-3.7	-4.3	-0.1	-0.4	1.5	0.9	-0.8	0.7	-1.8	-1.5	-0.2	0.1	4.4	0.9	-3.5	-0.6	100	-2	-1	-0.8	-0.5	0.4	1.6	-0.2	-1.6	
alpha_PDF24	0.1	-1.6	-4.3	2.2	-1.7	0.7	0.4	-1.8	-1.4	-0.4	-2.4	0.4	-2.1	2.6	-1	1	100	-0.6	-3.9	-1.6	-0.8	-0.2	0.8	6.8	-0.3	1.7	 60
alpha_PDF23	-0.7	-7.1	-3.1	-3.5	0.7	1.8	1.7	0.4	3.7	-2.8	-0.1	-0.8	3	5.7	2.8	100	1	-3.5	0.2	-0.5	-0.5		-1	-3.2	0.2	-5.8	
alpha_PDF22	0.3	1.9	0.3	1.6	-1	-0.4	-0.3	-0.4	-1.5	1	-0.7	0.5	-1.6	-1.3	100	2.8	-1	0.9	-1.2	-0.5	-0.1	0.2	0.3	3.4		2.6	
alpha_PDF21	0.5	9.1	12.4	-1.9	1.7	-3.5	-2	3.1	-0.5	4.3	4.8	0.3	1.2	100	-1.3	5.7	2.6	4.4	6.7	3	1.9	1.3	-1.7	-7.2	0.7	3	
alpha_PDF20	0.3	0.5	-2.7	2.8	-1.7	0.3	-0.1	-2	-2	0.5	-2	0.9	100	1.2	-1.6	3	-2.1	0.1	-3.5	-1.7	-0.2	-0.1	0.7	6.8	-0.2	3.3	
alpha_PDF2	-0.2	-0.7	-0.5	-0.4	0.5	0.1		0.4	0.4	-0.6	0.1	100	0.9	0.3	0.5	-0.8	0.4	-0.2	0.5	0.5	-0.4	-0.2	0.2	-1.7	-0.1	-1.3	 40
alpha_PDF19	0.1	-2.7	-7.6	2.9	-2.2	1.7	1.1	-1.4	-1.4	-2	100	0.1	-2	4.8	-0.7	-0.1	-2.4	-1.5	-5.1	-1.9	-1.3	-0.9	2	7.3	-0.8	0.7	
alpha_PDF18	-0.2	-3.3	-5.6	0.6	-0.5	1.7	1.1	-0.1	0.6	100	-2	-0.6	0.5	4.3	1	-2.8	-0.4	-1.8	-2.1	-0.5	-0.9	-0.9	1.3	1	-0.6	-2.2	
alpha_PDF17	0.2	2	-1.1	2.5	-1.1	-0.2	-0.4	-0.8	100	0.6	-1.4	0.4	-2	-0.5	-1.5	3.7	-1.4	0.7	-2.1	-0.6	-0.8	-0.2	0.9	4.4	-0.2	3	
alpha_PDF16	-0.4	-3.1	-3.8	1.6	-0.6	0.7		100	-0.8	-0.1	-1.4	0.4	-2	3.1	-0.4	0.4	-1.8	-0.8	-3.2	-1.8	-0.4	-0.2	-0.1	5	-0.1	0.8	
alpha_PDF15		1.6	2.4		0.6	-0.8	100		-0.4	1.1	1.1		-0.1	-2	-0.3	1.7	0.4	0.9	1.2	0.5	0.3	0.2	-0.4	-1.4	0.2	0.6	 20
alpha_PDF14	0.1	2.3	4.3	-0.7	0.6	100	-0.8	0.7	-0.2	1.7	1.7	0.1	0.3	-3.5	-0.4	1.8	0.7	1.5	2.2	0.9	0.6	0.6	-0.9	-2.2	0.3	0.7	
alpha_PDF13	0.3	-0.4	-3	1.8	100	0.6	0.6	-0.6	-1.1	-0.5	-2.2	0.5	-1.7	1.7	-1	0.7	-1.7	-0.4	-3	-1.2	-0.5	-0.1	0.9	5.6	-0.2	1.7	
alpha_PDF12	-0.3	-0.2	4.8	100	1.8	-0.7		1.6	2.5	0.6	2.9	-0.4	2.8	-1.9	1.6	-3.5	2.2	-0.1	4.2	1.3	1	0.7	-1.8	-6.9	0.6	-2.6	
alpha PDF11	-0.4	-0.8	100	4.8	-3	13	24	-3.8	-1.1	-5.6	-7.6	-0.5	-27	12 /	0.3	-3.1	-4.3	-4.3	-0.8	-3.6	-2.6	-23	3.0	11.6	-1.6	-24	
alpha PDE10	_0.0	100	_0.0	-0.2	_0_4	0.0	1.6	_2 4	2	_2.2	-0.7	.0.7	0.5	0.1	1.0	.7.1	.1.6	 7 0	- 4	.0.4	0	-0.6	0.9	2.0	.0.2	2.4	U
	-0.9	100	-9.0	-0.2	-0.4	2.3	1.0	-5.1	2	-0.0	-2.1	-0.7	0.0	9.1	1.9	-7.1	-1.0	-0.7	-4	-2.4	-0.0	-0.0		2.9	-0.3	-0.8	
alpha_PDF1	100	-0.9	-0.4	-0.3	0.3	0.1		-0.4	0.2	-0.2	0.1	-0.2	0.3	0.5	0.3	-0.7	0.1	-0.3	-0.1	-0.1	-0.3		-0.3	-0.4		-0.5	

 $alpha_PD_{F_1} alpha_PD_{F_{10}} alpha_PD_{F_{10}} alpha_PD_{F_{12}} alpha_PD_{F_{12}} alpha_PD_{F_{13}} alpha_PD_{F_{16}} alpha_PD_{F_{16}} alpha_PD_{F_{16}} alpha_PD_{F_{16}} alpha_PD_{F_{16}} alpha_PD_{F_{16}} alpha_PD_{F_{16}} alpha_PD_{F_{26}} alpha_PD_{F_{$

Матрица корреляции для всех собственных векторов набора ПФР используемых при измерении A_i в зависимости от $y^{l\nu}$

alpha_PDF9	-0.7	-10.5	-6.3	-1.2	0.7	1.5	0.7	-1.8	2.2	-2.3	-0.8	-1.4	1.6	5.9	2.2	-5.1	-0.6	-2.2	-0.8	-0.6	-0.7	-0.5	0.3	-1.5	0.3	100	100 ן
alpha_PDF8	0.1	0.4		0.2					-0.1		-0.1	0.2	-0.1	-0.1	-0.1				-0.1		0.3	-0.1		0.2	100	0.3	
alpha_PDF7	-0.5	-1.7	-1.1		0.7	-0.1	-0.3	-0.5	-0.2	-0.5	0.4	-0.9	0.8	0.3	0.4	0.7	-0.1	0.2	0.2	0.3	-1.2	-0.3	0.2	100	0.2	-1.5	
alpha_PDF6	-0.6	-0.6	0.5	-0.1	0.4	-0.3	-0.2	-1	-0.1	0.1	0.7	-0.1	0.1	-0.1		-0.1		0.2	-0.4	-0.4	-0.6	0.2	100	0.2		0.3	
alpha_PDF5	-0.1	-0.6	-0.8	0.1	0.2	0.2		-0.3		-0.3	-0.1	-0.1	0.1	0.6	0.2	-0.2		-0.3	-0.1	-0.1	-0.1	100	0.2	-0.3	-0.1	-0.5	 80
alpha_PDF4	-1	-0.9	-0.2	-0.6	0.7	-0.1	-0.3	-0.4	-0.3	-0.6	0.8	-1.3	1.3	0.3	0.6	-0.2	0.1	0.1	-0.1	0.3	100	-0.1	-0.6	-1.2	0.3	-0.7	00
alpha_PDF3	-0.2	-1.8	-0.9	-0.2		0.4	0.2	-0.8	0.4	-0.3	-0.2	0.2	-0.2	1.5	0.3	-1.4	-0.1	-0.7	-0.5	100	0.3	-0.1	-0.4	0.3		-0.6	
alpha_PDF26	-0.3	-1.8	-1.2	-0.1	0.2	0.5	0.3	-0.8	0.4	-0.7	-0.2			1.8	0.5	-1.8	0.1	-0.8	100	-0.5	-0.1	-0.1	-0.4	0.2	-0.1	-0.8	
alpha_PDF25		-3.7	-2.9	-0.9	-0.1	1.5	0.9	-0.5	1.5	-1.4	-1.1		0.3	4.1	1.2	-4.5	-0.2	100	-0.8	-0.7	0.1	-0.3	0.2	0.2		-2.2	
alpha_PDF24	-0.1	-1	-0.5	-0.2	0.1	0.1		-0.3	0.2	-0.1		-0.1	0.1	0.3	0.1	-0.2	100	-0.2	0.1	-0.1	0.1			-0.1		-0.6	 60
alpha_PDF23	-0.3	-8.2	-5.6	-2.3	-0.5	2.9	2	-0.6	3.6	-2.8	-2.1	-0.2	1.1	8.4	2.5	100	-0.2	-4.5	-1.8	-1.4	-0.2	-0.2	-0.1	0.7		-5.1	
alpha_PDF22	0.4	3.5	2.4	0.8	-0.3	-0.9	-0.4	0.8	-1.1	1.2	0.2	0.6	-0.7	-2.9	100	2.5	0.1	1.2	0.5	0.3	0.6	0.2		0.4	-0.1	2.2	
alpha_PDF21	0.6	9.8	6.9	1.8	-0.5	-2.9	-1.4	2.2	-3.2	3	1.5	0.6	-1	100	-2.9	8.4	0.3	4.1	1.8	1.5	0.3	0.6	-0.1	0.3	-0.1	5.9	
alpha_PDF20	0.5	2	1.3	0.6	-0.4	-0.3	-0.2	0.2	-0.5	0.8	-0.2	0.9	100	-1	-0.7	1.1	0.1	0.3		-0.2	1.3	0.1	0.1	0.8	-0.1	1.6	
alpha_PDF2	-0.6	-1.9	-1.1	-0.4	0.6		-0.1	-0.5	0.2	-0.6	0.4	100	0.9	0.6	0.6	-0.2	-0.1			0.2	-1.3	-0.1	-0.1	-0.9	0.2	-1.4	 40
alpha_PDF19	0.5	-0.7	-1.1	-0.2	-0.6	0.7	0.6	0.8	0.7	-0.3	100	0.4	-0.2	1.5	0.2	-2.1		-1.1	-0.2	-0.2	0.8	-0.1	0.7	0.4	-0.1	-0.8	
alpha_PDF18	-0.4	-3.5	-2.7	-0.7	0.3	1	0.6	-0.6	1.1	100	-0.3	-0.6	0.8	3	1.2	-2.8	-0.1	-1.4	-0.7	-0.3	-0.6	-0.3	0.1	-0.5		-2.3	
alpha_PDF17		3.5	2.5	1.1	0.2	-1.2	-0.8	0.3	100	1.1	0.7	0.2	-0.5	-3.2	-1.1	3.6	0.2	1.5	0.4	0.4	-0.3		-0.1	-0.2	-0.1	2.2	
alpha_PDF16	-1	-4.3	-2.2		1.3	0.3	-0.3	100	0.3	-0.6	0.8	-0.5	0.2	2.2	0.8	-0.6	-0.3	-0.5	-0.8	-0.8	-0.4	-0.3	-1	-0.5		-1.8	20
alpha_PDF15	-0.1	1	0.9	0.5	0.3	-0.6	100	-0.3	-0.8	0.6	0.6	-0.1	-0.2	-1.4	-0.4	2		0.9	0.3	0.2	-0.3		-0.2	-0.3		0.7	20
alpha_PDF14		2.3	2.1	0.7	0.1	100	-0.6	0.3	-1.2	1	0.7		-0.3	-2.9	-0.9	2.9	0.1	1.5	0.5	0.4	-0.1	0.2	-0.3	-0.1		1.5	
alpha_PDF13	0.6	1.6	0.9	-0.2	100	0.1	0.3	1.3	0.2	0.3	-0.6	0.6	-0.4	-0.5	-0.3	-0.5	0.1	-0.1	0.2		0.7	0.2	0.4	0.7		0.7	
alpha_PDF12	-0.2	-2	-1.3	100	-0.2	0.7	0.5		1.1	-0.7	-0.2	-0.4	0.6	1.8	0.8	-2.3	-0.2	-0.9	-0.1	-0.2	-0.6	0.1	-0.1		0.2	-1.2	
alpha_PDF11	-0.7	-9.6	100	-1.3	0.9	2.1	0.9	-2.2	2.5	-2.7	-1.1	-1.1	1.3	6.9	2.4	-5.6	-0.5	-2.9	-1.2	-0.9	-0.2	-0.8	0.5	-1.1		-6.3	0
alpha_PDF10	-1.6	100	-9.6	-2	1.6	2.3	1	-4.3	3.5	-3.5	-0.7	-1.9	2	9.8	3.5	-8.2	-1	-3.7	-1.8	-1.8	-0.9	-0.6	-0.6	-1.7	0.4	-10.5	
alpha_PDF1	100	-1.6	-0.7	-0.2	0.6		-0.1	-1		-0.4	0.5	-0.6	0.5	0.6	0.4	-0.3	-0.1		-0.3	-0.2	-1	-0.1	-0.6	-0.5	0.1	-0.7	

 $alpha_PDF_1 alpha_PDF_{10} alpha_PDF_{11} alpha_PDF_{12} alpha_PDF_{13} alpha_PDF_{14} alpha_PDF_{15} alpha_PDF_{16} alpha_PDF_{16} alpha_PDF_{16} alpha_PDF_{16} alpha_PDF_{16} alpha_PDF_{16} alpha_PDF_{20} alpha_P$

27 января 2023

Использованные данные

- При столкновении протон-протонных пучков с энергией 13 ТэВ.
- Монте-Карло данные, соответствующие условиям реальных протон-протонных столкновений эксперимента ATLAS во втором сеансе набора данных в 2017 и 2018 году.
- измерения

При измерении необходимо использовать данные, которые полностью соответствуют МК, поэтому данные отклонения никак не влияют на результаты

Методика измерения

$$L(A,\sigma) = \prod_{n}^{N_{bins}} \left\{ Pois(N_{obs}^n | N_{exp}^n(A,\sigma)) \right\}$$
(1)

$$N_{exp}^{n}(A,\sigma) = \left\{ \sum_{j=0}^{11} \sigma_{j} \left[T_{8j}^{n} + \sum_{i=0}^{7} A_{ij} T_{ij}^{n} + T_{B}^{n} \right] \right\}$$
(2)
$$n = (k, l, m), k = 0, ..., 7, l = 0, ..., 7, m = 0, ..., 10$$

$$T_{ij}^{mkl} = \sum_{evt \in \Delta_{jmkl}} P_i(\cos\theta_{CS}^{Truth}, \phi_{CS}^{Truth}) \frac{w^{evt}(r, t)}{f_j(\cos\theta_{cs}^{Truth}\phi_{CS}^{Truth})}$$
(3)

$$\Delta_{jmkl} = (\Delta p_T^{Truth,W})_j, (\Delta cos\theta_{CS}^{Reco})_m, (\Delta \phi_{CS}^{Reco})_k, (\Delta p_T^{Reco,W})_l$$

$$f_j(\cos\theta_{cs}^{Truth}\phi_{cs}^{Truth}) = \sigma_j \Big\{ P_8(\cos\theta_{CS}^{Truth}, \phi_{CS}^{Truth}) + \sum_{i=0}^8 A_{ij}^{ref} P_i(\cos\theta_{CS}^{Truth}, \phi_{CS}^{Truth}) \Big\}$$

Измерение проводится в реконструированном фазовом пространстве

- $L(A, \sigma)$ функция правдоподобия
- ► $N_{exp}^n(A, \sigma)$ число ожидаемых событий в измеряемом интервале трех кинематических переменных ($cos\theta_{CS}^{Reco}, \phi_{CS}^{Reco}, p_{T}^{Reco,W}$)
- ► A набор параметров для угловых коэффициентов A_{ii}
- • A_{ij} параметр, определяющий i угловой коэффициент для jинтервала по переменной $p_T^{Truth,W}$
- ► Tⁿ_{ii} набор шаблонных распределений, измеряемых в каждом интервале (m, k, l) переменных $(cos \theta_{CS}^{Reco}, \phi_{CS}^{Reco}, p_T^{Reco, W})$
- ► T_B шаблонное распределение для фоновых процессов
- ► σ набор параметров для σ_i
- σ_j параметр, определяющий неполяризационное сечение для jинтервала переменной $p_T^{Truth,W}$

► A^{Ref}_{ii} - набор референсных угловых коэффициентов

Критерии на отбор событий

p_T	$> 25 \Gamma$ эВ
$ d_0$ significance	< 5
$\Delta Z * sinTheta$	$<\!0.5$
$ \eta .$	< 2.47, без 1.37-1.52
$\mathrm{ptvarcone}20/p_T$	< 0.1
$\mathrm{topoetcone} 20/p_T$	$<\! 0.05$
Число лептонов	1

Список каналов, использованных в генераторе Монте-Карло при моделировании данных с низкой светимостью

Процесс	Номер	Генератор	Сечение [пб]
$W^+ \to e \nu$	361100	PowhegPythia8EvtGen	11610.0
$W^+ ightarrow \mu u$	361101	PowhegPythia8EvtGen	11610.0
$W^+ \to \tau \nu$	361102	PowhegPythia8EvtGen	11610.0
$W^- ightarrow e u$	361103	PowhegPythia8EvtGen	8630.0
$W^- ightarrow \mu u$	361104	PowhegPythia8EvtGen	8630.0
$W^- ightarrow au u$	361105	PowhegPythia8EvtGen	8630.0
$Z \rightarrow ee$	361106	PowhegPythia8EvtGen	1910.0
$Z \rightarrow \mu \mu$	361107	PowhegPythia8EvtGen	1910.0
$Z \rightarrow \tau \tau$	361108	PowhegPythia8EvtGen	1910.0
Diboson	363356	Sherpa_221_PDF30	15.56
Diboson	363358	Sherpa 221 PDF30	3.433
Diboson	363359	Sherpa_221_PDF30	24.72
Diboson	363360	Sherpa 221 PDF30	24.72
Diboson	363489	Sherpa_221_PDF30	11.42
Diboson	364250	Sherpa_221_PDF30	1.252
Diboson	364253	Sherpa 221 PDF30	4.583
Diboson	364254	Sherpa_221_PDF30	12.50
Diboson	364255	Sherpa 221 PDF30	3.235
Top	410013	PhPy8EG_P2012	35.82
Top	410014	PhPy8EG P2012	33.99
Top	410470	PhPy8EG	831.8
Top	410642	PhPy8EG	36.99
Top	410643	PhPy8EG	22.17
Top	410644	PowhegPythia8EvtGen	2.027
Top	410645	PowhegPythia8EvtGen	1.268

В партонной модели сечение получают через амплитуды жестких партон-партонных взаимодействий, которым предшествует образование двух партонов из сталкивающихся протонов на расстояниях значительно больших по сравнению с жесткими процессами. Сечение процесса представляется свёрткой функций распределений партонов в протоне(PDF) и вычисляемого в КХД сечения жесткого процесса.

$$p + p \rightarrow W + X \rightarrow l + \nu_l + X$$
 $\frac{d\sigma^{h_1 h_2}}{dp_T^2 dy d\Omega^*} = \sum_{a,b}$

- f_i функция определяет плотность вероятности обнаружения партона і с долей импульса партона х в протоне, на энергетическом масштабе, который задается параметром шкалы факторизации КХД М.
- σ_{ab} сечение процесса на партонном уровне, которое вычисляется по степеням бегущей константы связи КХД $lpha_{s}(\mu_{R}^{2})$
- *µ_R* энергетический масштаб перенормировки
- *p_T*, *y* поперечный импульс и быстрота в лабораторной системе
- ullet heta, ϕ полярный и азимутальный угол лептона в системе центра масс W-бозона.
- ▶ P1, P2 4-импульсы протонов;

 $\int dx_1 dx_2 f_a^{h_1}(x_1, M^2) f_b^{h_2}(x_2, M^2) \frac{s d\sigma_{ab}}{dt du d\Omega^*}(x_1 P_1, x_2 P_2, \alpha_s(\mu_R^2))$ (5) Суммирование выполняется по всем ароматам партонов Обычно $M \sim q$, где переданный 4-импульс q задает шкалу энергии, которая факторизует физику на больших расстояниях, связанную с излучением коллинеарных или мягких партонов, и которая не может быть количественно рассчитана в пертурбартивной КХД. Таким образом, вычисляемые в КХД переменные, определяемые конкретным физическим процессом, становятся «инфракрасно стабильными», то есть не зависят от физических процессов на больших расстояниях

Описание образования лептонных пар в процессах Дрелла-Яна можно осуществить по аналогии с глубоко неупругом вводятся 9 структурных функций, которые описывают чистую динамику адронной системы.

9 = 4(dis.) + 1(abs.) + 2(dis.) + 2(abs.)

Сохраняют Р честность Нарушают Р честность

Для факторизации лептонной и адронной части необходимо рассмотреть эквивалентное представление адронного тензора в базие спиральности.

m, m' = +, 0, -

 $H_{mm'} = \epsilon_{\mu}^{*}(m) H^{\mu\nu} \epsilon_{\nu}(m') \quad (6) \qquad \epsilon_{\mu}(\pm) = \frac{1}{\sqrt{2}}(0; \pm 1, -i, 0),$

$$H_{mm'} = \begin{bmatrix} H_{++} & H_{+0} & H_{+-} \\ H_{0+} & H_{00} & H_{0-} \\ H_{-+} & H_{-0} & H_{--} \end{bmatrix}$$

$$\begin{split} &\sigma^{U+L} \propto H^H_{00} + H_{++} + H_{--} & \sigma^L \\ &\sigma^T \propto 1/2(H_{++} + H_{--}) & \sigma^I \\ &\sigma^P \propto (H + + - H_{--}) & \sigma^A \\ &\sigma^7 \propto - i/2(H_{+-} - H_{-+}) & \sigma^8 \\ &\sigma^9 \propto - i/4(H_{+0} - H_{0+} - H_{-0} + H_{--}) \\ \end{split}$$

лептон-адронным рассеянием (через свертку лептонного $L_{\mu
u}$ и адронного тенозора $H_{\mu
u}$). По аналогии с данным процессом

$$\epsilon_{\mu}(0) = (0; 0, 0, 1)$$
 (7)

Где (7) векторы поляризации калибровочного бозона, определенные в выбранной системе его покоя.

 $\propto H_{00}$ $\propto 1/4(H_{+0} + H_{0+} - H_{-0} - H_{0-})$ $\propto (H_{+0} + H_{0+} + H_{-0} + H_{0-})$ $= -i/4(H_{+0} - H_{0+} + H_{-0} - H_{0-})$ 0-

 σ^{lpha} - сечения с заданной спиральностью, которые представляют собой линейные комбинации элементов поляризации матрицы плотности $H_{mm^{\prime}}$

<u>Угловая зависимость дифференциального сечения может быть записана в следующем виде:</u>

$$\frac{d\sigma}{dp_T^2 dy d\Omega^*} = \sum_{\alpha \in M}^9 g_{\alpha}(\theta, \phi) \frac{3}{16\pi} \frac{d\sigma^{\alpha}}{dp_T^2 dy} \quad (8)$$

$$M = \{U + L, L, T, I, P, A, 7, 8, 9\}$$

$$g_{U+L}(\theta, \phi) = 1 + \cos^2(\theta)$$

$$g_L(\theta, \phi) = 1 - 3\cos^2(\theta)$$

$$g_T(\theta, \phi) = 2\sin^2(\theta)\cos(2\phi)$$

$$g_I(\theta, \phi) = 2\sqrt{2}\sin^2(2\theta)\cos(\phi)$$

$$g_p(\theta, \phi) = 2\cos(\theta)$$

$$g_A(\theta, \phi) = 4\sqrt{2}\sin(\theta)\cos(\phi)$$

$$g_R(\theta, \phi) = 2\sqrt{2}\sin^2(2\theta)\cos(\phi)$$

$$g_R(\theta, \phi) = 2\sqrt{2}\sin^2(2\theta)\cos(\phi)$$

$$g_R(\theta, \phi) = 2\sqrt{2}\sin^2(\theta)\cos(\phi)$$

$$g_R(\theta, \phi) = 2\sqrt{2}\sin^2(\theta)\cos(\phi)$$

$$g_R(\theta, \phi) = 4\sqrt{2}\sin(\theta)\cos(\phi)$$

$$g_R(\theta, \phi) =$$

Каждое индивидуальное спиральное сечение зависит от констант связи W-бозона с кварками и лептонами следующим образом:

 $\sigma^{U+L,L,T,I} \propto (v_l^2 + a_l^2)(v_q^2 + a_q^2)$ $\sigma^{P,A} \propto v_l a_l v_q a_q$ $\sigma^{7,8} \propto (v_l^2 + a_l^2) v_q a_q$ $\sigma^9 \propto v_l a_l (v_a^2 + a_a^2)$

- гармонические полиномы второго порядка, умноженные на твующий нормировочный множитель ения с заданной спиральностью, которые представляют собой ые комбинации элементов поляризации матрицы плотности $H_{mm^{\prime}}$

> Через σ^{L+U} обозначено сечение неполяризованных бозонов, а через $\sigma^{L,T,I,P,A,7,8,9}$ обозначены различные вклады в сечение для калибровочных бозонов с разной поляризацией. ([https://inspirehep.net/literature/335604])

- $-H_{0}$
- $\sigma^{U+L,L,T,I,9}$ получают вклад от частей адронного тензора, сохраняющие Р честность
- $\sigma^{P,A,7,8}$ -пропорциональны частям адронного тензора, которые нарушают Р честность
- $g_{P,A,9}$ меняют знак при преобразовании Р честности \rightarrow угловые распределения включающие спиральные сечения $\sigma^{U+L,L,T,I,P,A}$ будут Р четными
- ▶ σ^{7,8,9} Т-нечетные

Представление дифференциального сечения в виде разложения по гармоническим полиномам, умноженным на безразмерные угловые коэффициенты A_{0-7}

А0-7 представляют отношение дифференциальных сечений с заданной поляризацией к неполяризованному сечению.

$$A_{0} = \frac{2d\sigma^{L}}{d\sigma^{U+L}} \quad A_{1} = \frac{2\sqrt{2}d\sigma^{I}}{d\sigma^{U+L}} \quad A_{2} = \frac{4d\sigma^{T}}{d\sigma^{U+L}} \quad A_{3} = \frac{4\sqrt{2}d\sigma^{A}}{d\sigma^{U+L}} \quad A_{4} = \frac{2d\sigma^{P}}{d\sigma^{U+L}} \quad A_{5} = \frac{2d\sigma^{7}}{d\sigma^{U+L}} \quad A_{6} = \frac{2\sqrt{2}d\sigma^{8}}{d\sigma^{U+L}} \quad A_{7} = \frac{4\sqrt{2}d\sigma^{9}}{d\sigma^{U+L}} \quad A_{8} = \frac{4\sqrt{2}d\sigma^{9}}{d\sigma^{U+L$$

$$= \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_T^2 dy} \left[(1 + \cos^2 \theta) + \sum_{i=0}^7 P_i(\cos\theta, \phi | A_i(p_T, y)) \right]$$

$$-3\cos^{2}(\theta)$$

$$2\sin^{2}(\theta)\cos(2\phi)$$

$$2\sqrt{2}\sin^{2}(2\theta)\cos(\phi)$$

$$2\cos(\theta)$$

$$P_4(\cos\theta,\phi) = 4\sqrt{2}\sin(\theta)\cos(\phi)$$

$$P_5(\cos\theta,\phi) = 2\sin^2(\theta)\cos(2\phi)$$

$$P_6(\cos\theta,\phi) = 2\sqrt{2}\sin^2(2\theta)\cos(\phi)$$

$$P_7(\cos\theta,\phi) = 4\sqrt{2}\sin(\theta)\cos(\phi)$$

(9)

Дифференциальное сечение

Представление дифференциального сечения в виде разложения по гармоническим полиномам, умноженным на безразмерные угловые коэффициенты A_{0-7}

$$\frac{d\sigma}{dp_T^2 dy d\Omega^*} = \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_T^2 dy} \left\{ (1 + \cos^2 \theta) + \frac{1}{2} A_0 (1 - 3\cos\theta) + A_1 \sin 2\theta \cos\phi + \frac{1}{2} A_2 \sin^2 \theta \cos 2\phi + A_1 \sin^2 \theta \cos 2\phi + A_1 \sin^2 \theta \cos^2 \theta + A_2 \sin^2 \theta + A_2 \sin^2 \theta \cos^2 \theta + A_2 \sin^2 \theta +$$

- Угловые коэффициенты A_i являются функциями кинематических переменных W-бозона: р_т -поперечного импульса и у - быстроты
- Зависимость A_i от p_T и y определяется выбором оси z системы покоя W-бозона.
- Значение A_i стремится к нулю, когда $\, p_T^W$ также стремится к нулю, за исключением коэффициента A_4 , который отвечает за асимметрию «вперед-назад» $3/8A_4 = A_{FB}$.
- , C помощью A_{FB} может быть <u>получен</u> $sin^2 heta_{eff}^{lept}$. Асимметрия является следствием нарушения P-четности.
- $B NLO A_5, A_6, A_7$ имеют малое отклонение от 0
- ullet В A_3 наибольший вклад вносит qg. Можно ограничить функцию распределения глюонов
- Соотношение Ламма-Тунга $A_0 = A_2$ в сохраняется LO, но нарушается в более высоких порядках.

 $A_3 \sin \theta \cos \phi + A_4 \cos \theta + A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi$

Соотношение Лама-Тунга

В <u>моделе</u> Дрелл-Яна $\lambda = 1, \mu = \nu = 0$, однако внутренние поперечные моменты партонов и эффекты КХД могут отклонять

Сравнивая (5) и (6), получим: $\lambda = \frac{2 - 3A_0}{2 + A_0}$, $\mu = \frac{2A_1}{2 + A_0}$, $\nu = \frac{2A_2}{2 + A_0}$. Тогда, соотношение Лама-Тунга можно записать как $A_0 = A_2$

$$A_{0} = \frac{2d\sigma^{L}}{d\sigma^{U+L}} \quad A_{1} = \frac{2\sqrt{2}d\sigma^{I}}{d\sigma^{U+L}} \quad A_{2} = \frac{4d\sigma^{T}}{d\sigma^{U+L}} \quad A_{3} = \frac{4\sqrt{2}d\sigma^{U+L}}{d\sigma^{U+L}} \quad A_{4} = \frac{2d\sigma^{P}}{d\sigma^{U+L}} \quad A_{5} = \frac{2d\sigma^{7}}{d\sigma^{U+L}} \quad A_{6} = \frac{2\sqrt{2}d\sigma^{8}}{d\sigma^{U+L}} \quad A_{7} = \frac{4\sqrt{2}d\sigma^{U+L}}{d\sigma^{U+L}} \quad$$

Согласно <u>статье</u> дифференциальное сечение можно быть записано как: $\frac{d\sigma}{d\Omega} \propto = 1 + \lambda cos^2\theta + \mu sin^2\theta cos \phi + \frac{\nu}{2}sin^2\theta cos 2\phi$ (6)

данные значения. В <u>статье</u> показана зависимость $1-\lambda=2
u$, которая называется соотношением Лама-Тунга.

 $\frac{d\sigma^A}{d\sigma^A} = \sigma^L$ - сечение бозона с продольной поляризацией σ^T - сечение бозона с поперечной поляризацией $d\sigma^9$

Соотношение Лама-Тунга сохраняется в LO, но нарушается в более высоких порядках.

Асимметрия вперед-назад

Асимметрия вылета лептона по направлению «вперед-назад» относительно массы покоя W определяется как:

Зарядовая асимметрия

 A_W - очень чувствительна к и и d, поэтому может быть использована для более точного измерения PDF

 σ^+ - полное сечение для $cos \theta > 0$

 σ^- - полное сечение для $cos \theta < 0$

Метод моментов

Метод моментов используется для оценки неизвестных параметров распределения, основанный на предполагаемых свойствах его моментов. Суть метода заключается в нахождение числовых параметров теоретического распределения через моменты, оценённые по выборке.

$$\langle P_i(\cos\theta,\phi)\rangle = \frac{\int P_i(\cos\theta,\phi)d\sigma(\cos\theta,\phi)d\cos\theta d\phi}{\int d\sigma(\cos\theta,\phi)d\cos\theta d\phi}$$

$$\begin{split} \frac{1}{2}(1-3\cos^2\theta)\rangle &= \frac{3}{20}(A_0 - \frac{2}{3}), \quad \langle \sin2\theta\cos\phi\rangle = \frac{1}{5}A_1, \\ \langle \sin^2\theta\cos2\phi\rangle &= \frac{1}{10}A_2, \qquad \langle \sin\theta\cos\phi\rangle = \frac{1}{4}A_3, \\ \langle \cos\theta\rangle &= \frac{1}{4}A_4, \qquad \langle \sin^2\theta\sin2\phi\rangle = \frac{1}{5}A_5, \\ \langle \sin2\theta\sin\phi\rangle &= \frac{1}{5}A_6, \qquad \langle \sin\theta\sin\phi\rangle = \frac{1}{4}A_7. \end{split}$$

Система покоя Коллинза-Сопера

• Направление оси z выбирается так, чтобы она делила угол между направлением трехмерных импульсов протонов в системе покоя пополам • Положительное направление оси z выбирается в сторону вылета W-бозона в лабораторной системе.

• Quark Plane-плоскость, вдоль которой которой $q\bar{q}$ сталкиваются, образуя Wбозон в состоянии покоя.

• Hadron Plane - плоскость, образованная векторами импульсов двух сталкивающихся адронов.

• Lepton plane - плоскость, определяемая вектором импульса заряженного лептона (I) и осью z.

Проверка методики измерения на псевдо-данных

- а значение коэффициентов A_0, A_2, A_3 увеличивается с ростом поперечного импульса
- отличное от нуля значение.

► Все A_i кроме A_4 равны нулю при малых значениях поперечного импульса. Значение коэффициента A_4 уменьшается с ростом поперечного импульса,

• Коэффициенты A_5, A_6, A_7 имеют центральное значение близкое к нулю во всем распределении поперечного импульса. Это связанно с тем, что используемые Монте-Карло данные с генераторов Powheg+Pythia8 были сгенерированны в NLO, а в этом порядка эти коэффициенты имеют не

