Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ»

УДК 539.12.01

ОТЧЕТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

КОСМОЛОГИЧЕСКАЯ ЭВОЛЮЦИЯ СОСТОЯНИЙ, ОБРАЗУЕМЫХ ТЯЖЕЛЫМИ СТАБИЛЬНЫМИ КВАРКАМИ. ЗАРЯДОВО АСИММЕТРИЧНЫЙ СЛУЧАЙ

Научный руководитель д. ф-м. н. Студент

_____ М. Ю. Хлопов _____ К. Ю. Массалов

Москва 2022

Содержание

Введение					
1	Зарядово-асимметричные модели стабильных кварков				
	1.1	Проблема избытка положительного заряда	3		
	1.2	Избыток отрицательного заряда и темные атомы	3		
2	Закалка тяжелых кварков и их кластеризация				
	2.1	Закалка тяжелых кварков в зарядово-ассиметричном случае	5		
	2.2	Кластеризация тяжелых кварков в зарядово-асимметричном случае	7		
За	аклю	очение	12		
C	писо	к использованных источников	13		

Введение

Проблема существования новых семейств кварков и лептонов является одной из важнейших в современной физике высоких энергий. Такие кварки и лептоны могут быть достаточно долгоживущими, чтобы представлять новую стабильную форму материи. В настоящее время существует по крайней мере две модели существования новых тяжелых кварков и лептонов в условиях зарядовой асимметрии. Рассмотрим их.

1 Зарядово-асимметричные модели стабильных кварков

1.1 Проблема избытка положительного заряда

Модель, предложенная Ш. Л. Глэшоу [1; 2], основывается на калибровочной группе $SU(3) \times SU(2) \times SU'(2) \times U(1)$ и включает в себя в два раза больше фермионов, чем стандартная модель. То есть кроме 12 известных фермионов и калибровочной группы $SU(3) \times SU(2) \times U(1)$ вводится 12 тяжелых тера-ферминов и калибровочная группа $SU(3) \times SU'(2) \times U(1)$. Также вводится CP' преобразование, которое связывает легкие фермионы с их зарядово сопряженными тяжелыми партнерами $(U \to \bar{u})$ и наоборот.

Масса каждого тера-фермиона равна массе его легкого партнера, умноженного на фактор S, причем отсутствие успехов в поиске новых частиц дает ограничение на S снизу:

$$S > 2 \cdot 10^5 \tag{1}$$

Соответствующий расчет [1] показывает, что стабильными являются только тера-кварки U, которые в результате сильного взаимодействия объединяются в $(UUU)^{++}$, и тера-электрон E^- , который, объединясь с $(UUU)^{++}$, образует (UUUEE):

$$U + U \to (UU) + g \qquad U + (UU) \to (UUU) + g$$

$$UUU) + Ep \to (UUUE) + p \qquad (UUUE) + Ep \to (UUUEE) + p,$$

(2)

где *g* — это глюон.

(

Остальные возможные соединения ((UUd), (Uud), (Ep) и др.) менее выгодны энергетически, в результате чего их концентрация много меньше концентрации (UUUEE). Получившийся гелий-подобный атом — один из кандидатов на роль частиц скрытой массы.

Однако в модели возникают проблемы, которые не могут быть решены в нынешней версии. Например, проблемой является захват свободного E^- в $(4HeE^-)^+$, что тормозит такую аннигиляцию E и E^+ и препятствует эффективному уменьшению первичной распространенности тералептона. Даже для минимального значения $S = 0, 2 \cdot 10^6$ прогнозируемое земное содержание аномального водорода превышает экспериментальные верхние пределы более чем на 20 порядков.

1.2 Избыток отрицательного заряда и темные атомы

Предыдущий подход пытается избежать проблем со свободными заряженными частицами темной материи, скрывая противоположно заряженные частицы в атомоподобных связанных системах, которые слабо взаимодействуют с барионной материей. В случае асимметрии заряда с избытком первичных частиц связывание положительных и отрицательных заряженных частиц никогда не бывает полным, и положительно заряженные тяжелые частицы должны сохраняться. Рекомбинируя с обычными электронами, эти тяжелые положительные частицы приводят к космологическому содержанию аномальных изотопов, превышающему экспериментальные верхние пределы. Чтобы соответствовать этим верхним пределам, аномальное содержание изотопов на Земле должно быть уменьшено, и механизмы такого уменьшения сопровождаются эффектами выделения энергии, которые сильно ограничены, в частности, данными с детекторов большого объема [3].

Другая модель предполагает наряду с избытком вещества избыток \bar{U} — стабильного антикварка четвертого поколения с массой больше 220 Gev [3; 4]. Кварк четвертого поколения из-за большой энергии связи образут стабильные легкие барионы и антибарионы: $(Uud), (\bar{U}\bar{u}\bar{d}), (UUu), (UUU), (\bar{U}\bar{U}\bar{u}), (\bar{U}\bar{U}\bar{U}).$ Последний, так называемый анутиум (<u>anti-U-triple state — anut</u>ium или $\Delta_{3\bar{U}}^{--}$) с размером $r_{\Delta} \sim 1/\alpha_{QCD} \cdot m_{U}$ (что много меньше обычного размера адронов $r_h \sim 1/r_{\pi}$), представляет особый интерес.

В ранней Вселенной при температурах, значительно превышающих массы \bar{U} -кварков, они находились в термодинамическом равновесии с релятивистской плазмой. Равновесные концентрации \bar{U} и Uпропорциональны соответственно $\exp\left(\frac{\mu}{T}\right)$ и $\exp\left(-\frac{\mu}{T}\right)$ [2]. Таким образом при дальнейшем остывании и расширении Вселенной часть *Ū*-кварков аннигилировала с больщей частью *U*-кварков, а оставшиеся из-за асимметрии \bar{U} -кварки начали объединяться и образовы
ывать ($\bar{U}\bar{U}\bar{U}$) с массой порядка 1 TeV. Также будут образовываться нейтральные состояния $(\bar{U}u)$ и $(\bar{U}\bar{U}\bar{u})^{--}$. При температурах T < 100 KeV (температура синтеза гелия) $\Delta_{3\bar{U}}^{--}$ начинает объединяться с гелием:

$$\Delta_{3\bar{U}}^{--} + {}^{4}\operatorname{He} \to \gamma + ({}^{4}\operatorname{He}^{++}\Delta_{3\bar{U}}^{--}).$$
(3)

В результате все отрицательные заряды связываются с ядром гелия, образуя т.н. О-гелий (${}^{4}\text{He}^{++}\Delta_{3\bar{U}}^{--}$) с массой порядка 1 TeV и радиусом

$$R_0 \sim 1/Z_E Z_{He} \alpha m_{He} \approx 2 \cdot 10^{-13} \text{см.}$$

$$\tag{4}$$

Такой «атом» может играть роль скрытой массы.

2 Закалка тяжелых кварков и их кластеризация

В дальнейшем будем предполагать, что:

$$\kappa \cdot 3m_U \sim \kappa_b \cdot 5m_p \Rightarrow \kappa \sim \kappa_b \cdot \frac{5m_p}{3m_U} \approx \frac{3.6 \cdot 10^{-14}}{S_6},\tag{5}$$

где $\kappa = \frac{n_{\bar{U}} - n_U}{s} -$ величина, характеризующая степень ассиметрии антивещества надо веществом.

2.1 Закалка тяжелых кварков в зарядово-ассиметричном случае

На данном этапе температура лежит в следующих пределах: $100S_6GeV = \frac{1}{20}m_U < T < m_U = 3.5S_6TeV$ При таких температурах (температурах, превышающих массу тяжелого кварка) вещество находится в равновесии с плазмой, а его концентрация определяется распределением Больцмана и химическим потенциалом μ [2]:

$$n_{eq} = g_S \left(\frac{mT}{2\pi}\right)^{3/2} \exp\left(-\frac{m}{T}\right) \tag{6}$$

$$n_{U,\bar{U}} = n_{eq} \exp\left(\pm\frac{\mu}{T}\right) \tag{7}$$

При температурах меньше массы тяжелого кварка и вплоть до примерно 1/20 массы тяжелого кварка равновесие начинает смещаться в сторону аннигиляции частиц и античастиц:

$$U + U \rightleftharpoons gg$$
 (8)

Система уравненй, описывающих изменение концентрации со временем, выглядит следующим образом:

$$\begin{cases} \frac{dn_U}{dt} + 3Hn_U = \langle \sigma v \rangle \left(n_{eq\,U} n_{eq\,\bar{U}} - n_U n_{\bar{U}} \right) \\ \frac{dn_{\bar{U}}}{dt} + 3Hn_{\bar{U}} = \langle \sigma v \rangle \left(n_{eq\,U} n_{eq\,\bar{U}} - n_U n_{\bar{U}} \right) \end{cases}$$
(9)

При замене перемнных $x = \frac{T}{m_U}$; $r_{\pm} = \frac{n_{U,\bar{U}}}{s}$; $Hdt = -\frac{dT}{T} = \frac{dx}{x}$; $\kappa = r_- - r_+$ уравнение преобразуется следующим образом:

$$\begin{cases} \frac{dr_{+}}{dx} = f_{1} \langle \sigma v \rangle \left(r_{+}r_{-} - f_{2} \right), & f_{1} = \frac{s}{Hx} = \sqrt{\frac{\pi g_{s}^{2}}{45g_{\epsilon}}} m_{Pl} m_{U} \\ \frac{dr_{-}}{dx} = f_{1} \langle \sigma v \rangle \left(r_{+}r_{-} - f_{2} \right), & f_{2} = \frac{n_{eq}^{2}}{s^{2}} = \frac{45^{2}g_{S}^{2}}{2^{5}\pi^{7}g_{s}^{2}} \cdot \frac{e^{-\frac{2}{x}}}{x^{3}} \end{cases}$$
(10)

При температуре ниже некоторой температуры T_f (T_f , а значит и x_f , определяется из условия $R(T_f) = H(T_f)$) $x < x_f$: можно пренебречь слагаемым с f_2 , так как оно убывает гораздо быстрее, чем r_+r_- : $f_2 << r_+r_-$:

$$\begin{cases} \frac{dr_{+}}{dx} \approx f_{1} \langle \sigma v \rangle \left(r_{+} r_{-} \right) \\ \frac{dr_{-}}{dx} \approx f_{1} \langle \sigma v \rangle \left(r_{+} r_{-} \right) \end{cases}$$
(11)

В таком случае решением является:

$$\begin{cases} r_{+}(x\approx0)\approx\frac{\kappa r_{+f}}{(\kappa+r_{+f})e^{\kappa J}-r_{+f}}\\ r_{-}(x\approx0)\approx\frac{\kappa r_{-f}}{r_{-f}-(r_{-f}-\kappa)e^{-\kappa J}} \end{cases},$$
(12)

где $J = \int_{0}^{x_f} f_1 \langle \sigma v \rangle dx = \frac{1.3 \cdot 10^{12}}{S_6 \left(1 - \frac{\ln S_6}{30}\right)}.$

m_U, TeV	$\kappa, 10^{-14}$	$r_U, 10^{-13}$	$r_{\bar{U}}, 10^{-13}$	
2	1,80	7,72	7,90	
1,9	$1,\!89$	$7,\!34$	$7,\!53$	
1,8	2,00	$6,\!95$	$7,\!15$	
1,7	$2,\!11$	$6,\!57$	6,78	
1,6	$2,\!25$	$6,\!18$	6,41	
1,5	$2,\!40$	5,79	6,03	
1,4	$2,\!57$	$5,\!40$	$5,\!66$	
1,3	2,76	5,01	$5,\!29$	
1,2	$3,\!00$	$4,\!62$	4,92	
1,1	$3,\!27$	4,22	$4,\!55$	
1	$3,\!60$	$3,\!82$	4,18	
0,9	4,00	$3,\!41$	$3,\!81$	
0,8	4,50	$3,\!00$	$3,\!45$	
0,7	$5,\!14$	$2,\!58$	$3,\!09$	
0,6	6,00	$2,\!15$	2,75	
0,5	7,20	1,70	$2,\!42$	
0,4	9,00	1,24	$2,\!14$	
0,3	$12,\!00$	0,74	$1,\!94$	
0,2	18,00	$0,\!25$	$2,\!05$	

Таблица 1: Численные значения для концентраций при разных массах U кварка на этапе закалки

Рис. 1: График зависимости r_U и $r_{\bar{U}}$ от m_U

2.2 Кластеризация тяжелых кварков в зарядово-асимметричном случае

На этой стадии температура лежит в следующих пределах: $0.5S_6GeV < T < I_U \approx \frac{\alpha_c^2 m_U}{4} = 15S_6GeV$. При таких условиях начинается объединение отдельных кварков в результате сильного взаимодействия. Сначала рассмотрим их объединение в кварконий $U\bar{U}$:

$$\begin{array}{c} U+\bar{U}\rightarrow U\bar{U}+g\\ U\bar{U}\rightarrow gg \end{array}$$

Время жизни кваркония вычисляется аналогично времени жизни позитрония: $\tau_0 = \frac{2}{m_U \alpha^5}$ и $\tau_1 = 2$ $2 \qquad 9\pi$

 $\frac{2}{m_U\alpha^5}\cdot\frac{9\pi}{4(\pi^2-9)\alpha}\approx 10^2\tau_0$ при $\alpha=0.1~(\tau_0$ — время жизни паракваркония(S=0), τ_1 — время жизни орто-кваркония(S=1))

Скорость обратной реакции $R = n \langle \sigma v \rangle \sim g_S T^3 \cdot \frac{\alpha^2}{m_U^2} \approx g_s \frac{\alpha^8 m_U}{64}; \ t \sim \frac{1}{R}, g_S = 16 \Rightarrow t \sim \frac{4}{\alpha^8 m_U} \approx 0$ то

 $2000\tau_{0}$

Видно, что время жизни такого состояния много меньше времени протекания обратной реакции, поэтому ею в расчетах можно пренебречь, а концентрацию $U\bar{U}$ считать равной нулю.

Концентрации остальных соединений взаимосвязаны, поэтому процессы с их участием надо рассматривать в связке:

$U + U \rightleftharpoons UU + g$	$ar{U}+ar{U} \rightleftarrows ar{U}ar{U}+g$
$UU + U \rightarrow UUU$	$\bar{U}\bar{U}+\bar{U}\to\bar{U}\bar{U}\bar{U}$
$UU + \bar{U} \rightarrow U$	$\bar{U}\bar{U}+U\to\bar{U}$
$UUU + \bar{U} \rightarrow UU$	$\bar{U}\bar{U}\bar{U}+U\to\bar{U}\bar{U}$
$UUU + \bar{U}\bar{U} \to U$	$\bar{U}\bar{U}\bar{U}+UU\to\bar{U}$
$UU + \bar{U}\bar{U} \rightarrow gg$	$UUU + \bar{U}\bar{U}\bar{U} o gg$

Здесь в нулевом приближении считаем, что для всех реакций объединения кварков в связные системы сечения одинаковы и равны:

$$\langle \sigma v \rangle = \pi \left(\frac{m}{T}\right)^{0.9} \left(\frac{\alpha}{m}\right)^2$$
 (13)

Реакцию разрушения дикварков можно рассматривать как процесс ионизации, поэтому сечение возьмем по аналогии с сечением фотоионизации атома водорода. Используем полуклассическую формулу для водородоподобных систем[5]:

$$\langle \sigma v \rangle_{UU+g} = \frac{64\pi^4 \cdot m_e e^{10}}{3\sqrt{3} \cdot ch^6} \frac{z^4}{\nu^3 n^5} \tag{14}$$

После некоторых преобразований (замена массы электрона на массу кварка, переход от электромагнитного взаимодействия к сильному) получаем:

$$\langle \sigma v \rangle_{UU+g} = \frac{64\pi^4}{3\sqrt{3}} \cdot \frac{\alpha^5 m_U}{T^3} \tag{15}$$

Таким образом, уравнения для r(T) выглядят следующим образом:

$$\begin{cases} \frac{dr_{U}}{dT} = -\frac{\pi \cdot s}{HT} \left(\frac{m}{T}\right)^{9/10} \left(\frac{\alpha}{m}\right)^{2} \left(-r_{U}^{2} + \frac{64\pi^{3}\alpha^{3}}{3\sqrt{(3)}} \left(\frac{m}{T}\right)^{2.1} r_{UU}r_{g} - r_{U}r_{\bar{U}} - \frac{r_{U}r_{UU}}{1.5^{1.1}} \right) \\ -\frac{r_{U}r_{\bar{U}\bar{U}}}{1.5^{1.1}} - \frac{r_{U}r_{\bar{U}\bar{U}\bar{U}}}{2.1} + \frac{r_{UU}r_{\bar{U}}}{1.5^{1.1}} + \frac{r_{UU}r_{\bar{U}\bar{U}}}{2.5^{1.1}} \right) \\ \frac{dr_{UU}}{dT} = -\frac{\pi \cdot s}{HT} \left(\frac{m}{T}\right)^{9/10} \left(\frac{\alpha}{m}\right)^{2} \left(r_{U}^{2} - \frac{64\pi^{3}\alpha^{3}}{3\sqrt{(3)}} \left(\frac{m}{T}\right)^{2.1} r_{UU}r_{g} - \frac{r_{U}r_{UU}}{1.5^{1.1}} - \frac{r_{UU}r_{\bar{U}\bar{U}}}{1.5^{1.1}} - \frac{r_{UU}r_{\bar{U}\bar{U}}}{2.1} \right) \\ \frac{dr_{UUU}}{dT} = -\frac{\pi \cdot s}{HT} \left(\frac{m}{T}\right)^{9/10} \left(\frac{\alpha}{m}\right)^{2} \left(\frac{r_{U}r_{UU}}{1.5^{1.1}} - \frac{r_{UU}r_{\bar{U}\bar{U}}}{2.5^{1.1}} - \frac{r_{UU}r_{\bar{U}\bar{U}}}{2.5^{1.1}} \right) \\ \frac{dr_{\bar{U}}}{dT} = -\frac{\pi \cdot s}{HT} \left(\frac{m}{T}\right)^{9/10} \left(\frac{\alpha}{m}\right)^{2} \left(-r_{\bar{U}}^{2} + \frac{64\pi^{3}\alpha^{3}}{3\sqrt{(3)}} \left(\frac{m}{T}\right)^{2.1} r_{\bar{U}\bar{U}}r_{g} - r_{U}r_{\bar{U}} - \frac{r_{U}r_{\bar{U}\bar{U}}}{3^{1.1}} \right) \\ \frac{dr_{\bar{U}\bar{U}}}{dT} = -\frac{\pi \cdot s}{HT} \left(\frac{m}{T}\right)^{9/10} \left(\frac{\alpha}{m}\right)^{2} \left(-r_{\bar{U}}^{2} + \frac{64\pi^{3}\alpha^{3}}{3\sqrt{(3)}} \left(\frac{m}{T}\right)^{2.1} r_{\bar{U}\bar{U}\bar{U}} - \frac{r_{U}r_{\bar{U}\bar{U}}}{1.5^{1.1}} - \frac{r_{U}r_{\bar{U}\bar{U}}}{1.5^{1.1}} \right) \\ \frac{dr_{\bar{U}\bar{U}}}{dT} = -\frac{\pi \cdot s}{HT} \left(\frac{m}{T}\right)^{9/10} \left(\frac{\alpha}{m}\right)^{2} \left(r_{\bar{U}}^{2} - \frac{64\pi^{3}\alpha^{3}}{3\sqrt{(3)}} \left(\frac{m}{T}\right)^{2.1} r_{\bar{U}\bar{U}\bar{U}\bar{U}} - \frac{r_{\bar{U}\bar{U}\bar{U}\bar{U}}}{1.5^{1.1}} - \frac{r_{\bar{U}\bar{U}\bar{U}\bar{U}}}{1.5^{1.1}} \right) \\ \frac{dr_{\bar{U}\bar{U}}}{dT} = -\frac{\pi \cdot s}{HT} \left(\frac{m}{T}\right)^{9/10} \left(\frac{\alpha}{m}\right)^{2} \left(r_{\bar{U}}^{2} - \frac{64\pi^{3}\alpha^{3}}{3\sqrt{(3)}} \left(\frac{m}{T}\right)^{2.1} r_{\bar{U}\bar{U}\bar{U}\bar{U}\bar{U}} - \frac{r_{\bar{U}\bar{U}\bar{U}\bar{U}}}{1.5^{1.1}} - \frac{r_{\bar{U}\bar{U}\bar{U}\bar{U}}}{1.5^{1.1}} - \frac{r_{\bar{U}\bar{U}\bar{U}\bar{U}}}{1.5^{1.1}} \right) \\ \frac{dr_{\bar{U}\bar{U}}}{dT} = -\frac{\pi \cdot s}{HT} \left(\frac{m}{T}\right)^{9/10} \left(\frac{\alpha}{m}\right)^{2} \left(\frac{r_{\bar{U}\bar{U}\bar{U}}}{1.5^{1.1}} - \frac{r_{\bar{U}\bar{U}\bar{U}\bar{U}}}{2.5^{1.1}}} - \frac{r_{\bar{U}\bar{U}\bar{U}\bar{U}}}{2.5^{1.1}} \right) \\ \frac{dr_{\bar{U}\bar{U}}}}{dT} = -\frac{\pi \cdot s}{HT} \left(\frac{m}{T}\right)^{9/10} \left(\frac{\alpha}{m}\right)^{2} \left(\frac{r_{\bar{U}\bar{U}}}{1.5^{1.1}} - \frac{r_{\bar{U}\bar{U}\bar{U}\bar{U}}}{2.5^{1.1}} - \frac{r_{\bar{U}\bar{U}\bar{U}\bar{U}}}{2.5^{1.1}} \right) \\ \frac{dr_{\bar{U}\bar{U}}}}{dT} = -$$

Решение данной системы получено численно при помощи пакета Matlab.

Рис. 2: График зависимости $\frac{r}{\kappa}$ от $m_U(r_U,r_{\bar{U}},r_{UU},r_{\bar{U}\bar{U}})$

Рис. 3: График зависимости $\frac{r}{\kappa}$ от $m_U(r_U, r_{\bar{U}}, r_{UU}, r_{\bar{U}\bar{U}}, r_{UUU}, r_{\bar{U}\bar{U}\bar{U}})$

m_U, TeV	r_U	$r_{ar{U}}$	r_{UU}	$r_{ar{U}ar{U}}$	r_{UUU}	$r_{ar{U}ar{U}ar{U}}$
0.7	9.5e-22	1.7e-13	2.6e-23	8.4e-20	1.5e-28	2.4e-16
1.4	6.8e-21	8.9e-14	2.6e-23	4.2e-20	5.8e-21	9.8e-17
2.1	2.1e-17	5.9e-14	5.2e-22	2.8e-20	1.8e-18	1.3e-16
2.8	5.1e-16	4.5e-14	5.8e-22	2.2e-20	1.9e-17	2.1e-16
3.5	2.1e-15	3.7e-14	3.7e-22	2.0e-20	6.7e-17	3.1e-16
10	3.2e-14	4.3e-14	4.3e-20	7.5e-20	3.5e-15	4.1e-15
14	4.5e-14	5.3e-14	1.2e-19	1.6e-19	7.8e-15	8.5e-15
21	7.2e-14	7.7e-14	4.7e-19	5.2e-19	2.1e-14	2.2e-14
31	1.1e-13	1.1e-13	1.7e-18	1.8e-18	5.2e-14	5.3e-14
70	2.4e-13	2.5e-13	2.2e-17	2.2e-17	2.0e-13	2.0e-13
105	3.7e-13	3.7e-13	8.1e-17	8.1e-17	3.6e-13	3.6e-13

Таблица 2: Численные значения для концентраций при разных массах U кварка на этапе кластеризации

Видно, что концентрация $UU(\bar{U}\bar{U})$ убывает гораздо быстрее, чем $U(\bar{U})$ или $UUU(\bar{U}\bar{U}\bar{U})$. Это означает, что соединения типа UUu или Uuu будут формироваться в очень маленьком количестве, что не позволит их обнаружить в современном веществе.

Заключение

В ходе работы освоены методы расчета конентраций кварков на ранних стадиях эволюции Вселенной (в частности на RD-стадии), рассчитаны и построены графики зависимости конентраций тяжелых кварков от их массы вплоть до момента начала их объединения с легкими кварками.

В дальнейшем планируется рассмотреть дальнейшую эволюцию: формирование устойчивых систем из тяжелых и легких кварков и их предполагаемые концентрации в нашей Вселенной.

Список использованных источников

- 1. Glashow S. L. A Sinister extension of the standard model to SU(3) x SU(2) x U(1) // 11th International Workshop on Neutrino Telescopes. 04.2005. C. 539-547. arXiv: hep-ph/0504287.
- Fargion D., Khlopov M. Tera-leptons' shadows over Sinister Universe // Grav. Cosmol. 2013. T. 19. C. 219-231. arXiv: hep-ph/0507087.
- Khlopov M. Y. Composite dark matter from 4th generation // Pisma Zh. Eksp. Teor. Fiz. 2006. T. 83. C. 3-6. arXiv: astro-ph/0511796.
- 4. Belotsky K., Khlopov M., Shibaev K. Stable quarks of the 4th family? 2008. Июнь. arXiv: 0806.1067 [astro-ph].
- 5. Lochte-Holtgreven W. "Plasma Diagnostics". 1968.