КОСМОЛОГИЧЕСКАЯ ЭВОЛЮЦИЯ СОСТОЯНИЙ, ОБРАЗУЕМЫХ ТЯЖЕЛЫМИ СТАБИЛЬНЫМИ КВАРКАМИ. ЗАРЯДОВО АСИММЕТРИЧНЫЙ СЛУЧАЙ

Научный руководитель д. ф. –м. н., профессор Выполнил

М. Ю. Хлопов К. Ю. Массалов

Введение

$$n_u < n_{\overline{u}}$$
 m_U =3,5* S_6 TeV $\kappa \cdot 3m_U \sim \kappa_b \cdot 5m_p \Rightarrow \kappa \sim \kappa_b \cdot \frac{5m_p}{3m_U} \approx \frac{3.6 \cdot 10^{-14}}{S_6}$, $S_6 > 0,2$ $\kappa = \frac{n_{\overline{U}} - n_U}{s_{\overline{U}}}$

$$100S_6GeV = \frac{1}{20}m_U < T < m_U = 3.5S_6TeV$$

Равновесие смещается в сторону реакции (2):

$$U + \bar{U} \rightleftarrows gg$$
 (1)

$$U + \bar{U} \rightarrow gg$$
 (2)

$$100S_6GeV = \frac{1}{20}m_U < T < m_U = 3.5S_6TeV$$

$$\begin{cases} \frac{dn_{U}}{dt} + 3H\bar{n_{U}} = \langle \sigma v \rangle \left(n_{eq\,U} n_{eq\,\bar{U}} - n_{U} n_{\bar{U}} \right) \\ \frac{dn_{\bar{U}}}{dt} + 3H\bar{n_{U}} = \langle \sigma v \rangle \left(n_{eq\,U} n_{eq\,\bar{U}} - n_{U} n_{\bar{U}} \right) \end{cases}$$

$$n_{eq} = g_S \left(\frac{mT}{2\pi}\right)^{3/2} \exp\left(-\frac{m}{T}\right)$$

$$n_{U,\bar{U}} = n_{eq} \exp\left(\pm \frac{\mu}{T}\right)$$

$$100S_6GeV = \frac{1}{20}m_U < T < m_U = 3.5S_6TeV$$

$$\begin{cases} r_{+}(x\approx 0) \approx \frac{\kappa r_{+f}}{(\kappa + r_{+f})e^{\kappa J} - r_{+f}} \\ r_{-}(x\approx 0) \approx \frac{\kappa r_{-f}}{r_{-f} - (r_{-f} - \kappa)e^{-\kappa J}} \end{cases} , \text{ где } J = \int_{0}^{x_{f}} f_{1} \langle \sigma v \rangle dx = \frac{1.3 \cdot 10^{12}}{S_{6} \left(1 - \frac{\ln S_{6}}{30}\right)} \\ x = \frac{T}{m_{U}} \end{cases}$$
$$r_{\pm} = \frac{n_{U,\bar{U}}}{s}$$

$$100S_6GeV = \frac{1}{20}m_U < T < m_U = 3.5S_6TeV$$

m_U, TeV	$\kappa, 10^{-14}$	$r_U, 10^{-13}$	$r_{\bar{U}}, 10^{-13}$
2	1,80	7,72	7,90
1,9	1,89	7,34	7,53
1,8	2,00	6,95	7,15
1,7	2,11	6,57	6,78
1,6	2,25	6,18	6,41
1,5	2,40	5,79	6,03
1,4	2,57	5,40	5,66
1,3	2,76	5,01	5,29
1,2	3,00	4,62	4,92
1,1	3,27	4,22	$4,\!55$
1	3,60	3,82	4,18
0,9	4,00	3,41	3,81
0,8	4,50	3,00	3,45
0,7	5,14	2,58	3,09
0,6	6,00	2,15	2,75
0,5	7,20	1,70	2,42
0,4	9,00	1,24	2,14
0,3	12,00	0,74	1,94
0,2	18,00	0,25	2,05

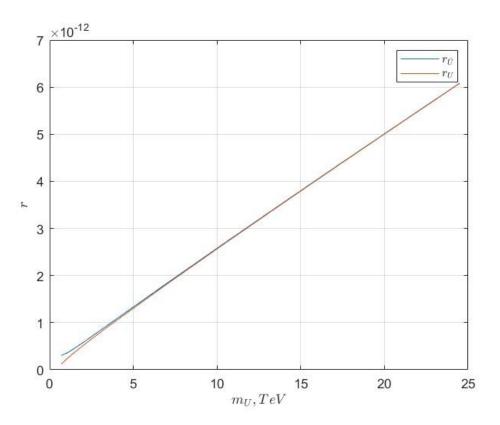


Рис. 1: График зависимости r_U и $r_{\bar{U}}$ от m_U

Таблица 1: Численные значения для концентраций при разных массах U кварка на этапе закалки

$$0.5S_6GeV < T < I_U \approx \frac{\alpha_c^2 m_U}{4} = 15S_6GeV$$

$$U + \bar{U} \to U\bar{U} + g$$
$$U\bar{U} \to gg$$

$$\tau_0 = \frac{2}{m_U \alpha^5}$$

 $R = n \langle \sigma v \rangle \sim g_S T^3 * \frac{\alpha^2}{m_U^2} \approx g_s \frac{\alpha^8 m_U}{64}; \ t \sim \frac{1}{R}, g_S = 16 \Rightarrow t \sim \frac{4}{\alpha^8 m_U} \approx \underline{2000 \tau_0}$

$$0.5S_6GeV < T < I_U \approx \frac{\alpha_c^2 m_U}{4} = 15S_6GeV$$

$$\begin{array}{c} U+U\rightleftarrows UU+g\\ UU+U\to UUU\\ UU+\bar{U}\to U\\ UUU+\bar{U}\to U\\ UUU+\bar{U}\to U\\ UUU+\bar{U}\bar{U}\to g\\ \end{array}$$

$$\langle \sigma v \rangle = \pi \left(\frac{m}{T}\right)^{0.9} \left(\frac{\alpha}{m}\right)^2$$

$$\begin{split} \bar{U} + \bar{U} &\rightleftarrows \bar{U}\bar{U} + g \\ \bar{U}\bar{U} + \bar{U} &\to \bar{U}\bar{U}\bar{U} \\ \bar{U}\bar{U} + \bar{U} &\to \bar{U} \\ \bar{U}\bar{U} + \bar{U} &\to \bar{U} \\ \bar{U}\bar{U}\bar{U} + \bar{U} &\to \bar{U}\bar{U} \\ \bar{U}\bar{U}\bar{U} + \bar{U}\bar{U} &\to \bar{U} \\ \bar{U}\bar{U}\bar{U} + \bar{U}\bar{U} &\to gg \end{split}$$

$$\langle \sigma v \rangle_{UU+g} = \frac{64\pi^4 \cdot m_e e^{10}}{3\sqrt{3} \cdot ch^6} \frac{z^4}{\nu^3 n^5}$$
$$\langle \sigma v \rangle_{UU+g} = \frac{64\pi^4}{3\sqrt{3}} \cdot \frac{\alpha^5 m_U}{T^3}$$

$$0.5S_6GeV < T < I_U \approx \frac{\alpha_c^2 m_U}{4} = 15S_6GeV$$

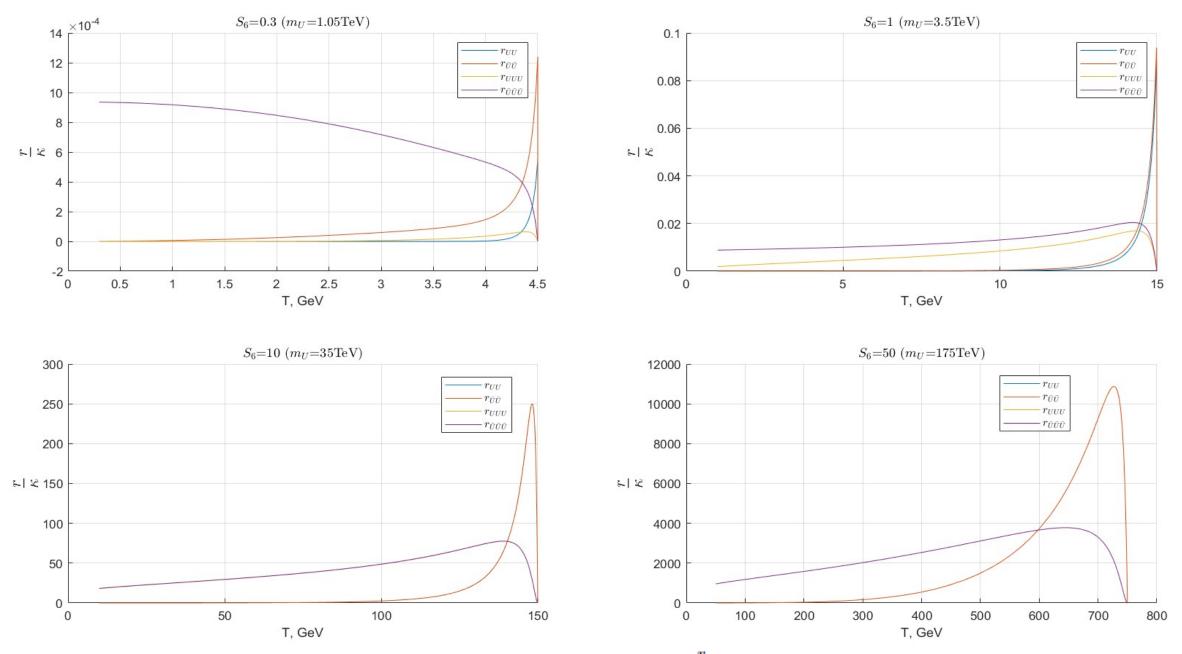
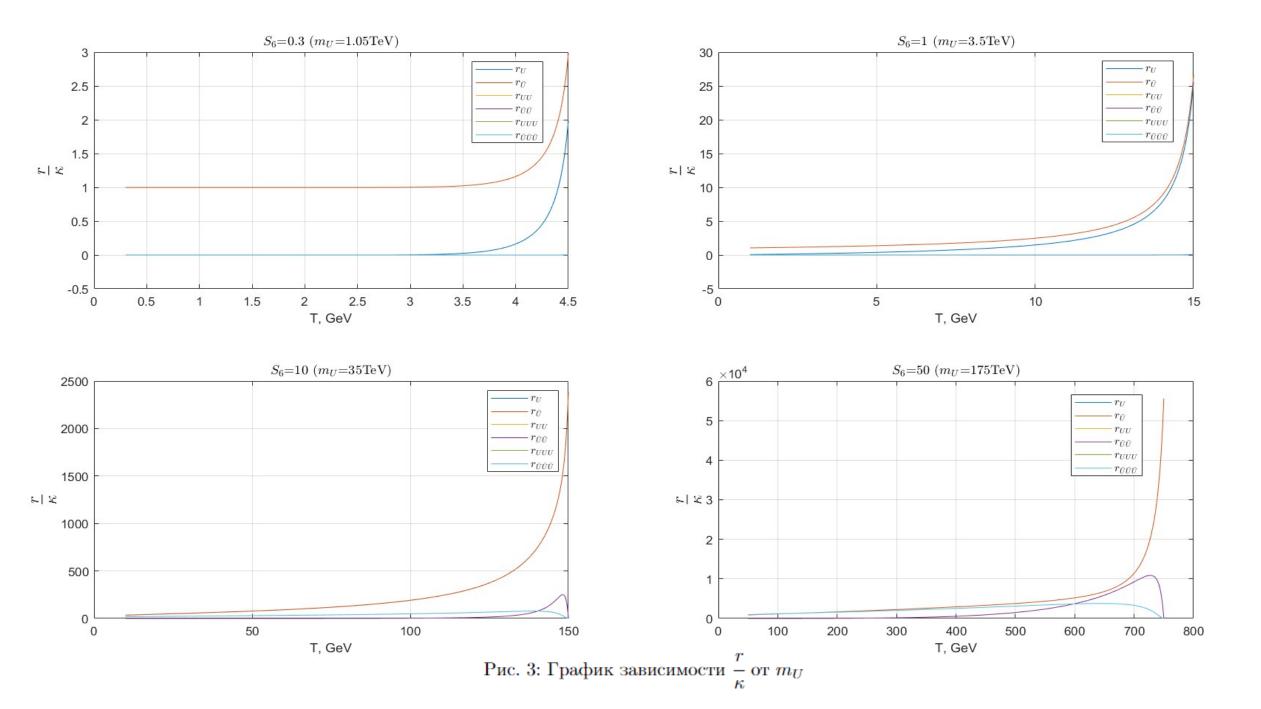



Рис. 2: График зависимости $\frac{r}{\kappa}$ от m_U

$$0.5S_6GeV < T < I_U \approx \frac{\alpha_c^2 m_U}{4} = 15S_6GeV$$

m_U, TeV	r_U	$r_{ar{U}}$	r_{UU}	$r_{ar{U}ar{U}}$	r_{UUU}	$r_{ar{U}ar{U}ar{U}}$
0.7	9.5e-22	1.7e-13	2.6e-23	8.4e-20	1.5e-28	2.4e-16
1.4	6.8e-21	8.9e-14	2.6e-23	4.2e-20	5.8e-21	9.8e-17
2.1	2.1e-17	5.9e-14	5.2e-22	2.8e-20	1.8e-18	1.3e-16
2.8	5.1e-16	4.5e-14	5.8e-22	2.2e-20	1.9e-17	2.1e-16
3.5	2.1e-15	3.7e-14	3.7e-22	2.0e-20	6.7e-17	3.1e-16
10	3.2e-14	4.3e-14	4.3e-20	7.5e-20	3.5e-15	4.1e-15
14	4.5e-14	5.3e-14	1.2e-19	1.6e-19	7.8e-15	8.5e-15
21	7.2e-14	7.7e-14	4.7e-19	5.2e-19	2.1e-14	2.2e-14
31	1.1e-13	1.1e-13	1.7e-18	1.8e-18	5.2e-14	5.3e-14
70	2.4e-13	2.5e-13	2.2e-17	2.2e-17	2.0e-13	2.0e-13
105	3.7e-13	3.7e-13	8.1e-17	8.1e-17	3.6e-13	3.6e-13

Таблица 2: Численные значения для концентраций при разных массах U кварка на этапе кластеризации

Заключение

- В дальнейшем планируется рассмотреть дальнейшую эволюцию: формирование устойчивых систем из тяжелых и легких кварков и их предполагаемые концентрации в нашей Вселенной
- Оценить, насколько подавляется положительно заряженная компонента

Спасибо за внимание!