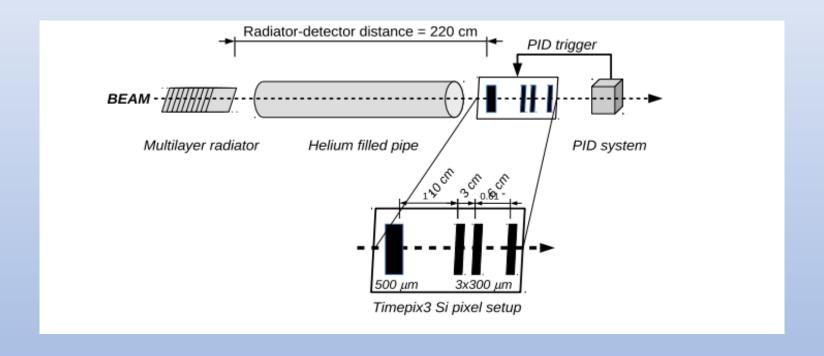
Национальный исследовательский ядерный университет «МИФИ»


Кафедра физики элементарных частиц №40 Научная исследовательская работа студента на тему:

АНАЛИЗ КООРДИНАТНОЙ ТОЧНОСТИ ДЕТЕКТОРА ПЕРЕХОДНОГО ИЗЛУЧЕНИЯ НА ОСНОВЕ ПОЛУПРОВОДНИКОВЫХ ПИКСЕЛЬНЫХ СЕНСОРОВ

Работа студента 4-ого курса Якобнюка Леонида Алексеевича Научный руководитель, доцент Смирнов Сергей Юрьевич

Цель работы — предварительный анализ двух версий программы кластеризации, поиск ошибок в их работе, а также ознакомление с методами вычисления координатной точности детектора переходного излучения на основе полупроводниковых пиксельных сенсоров.

Схема установки (эксперимент проводился на пучке ускорителя SPS)

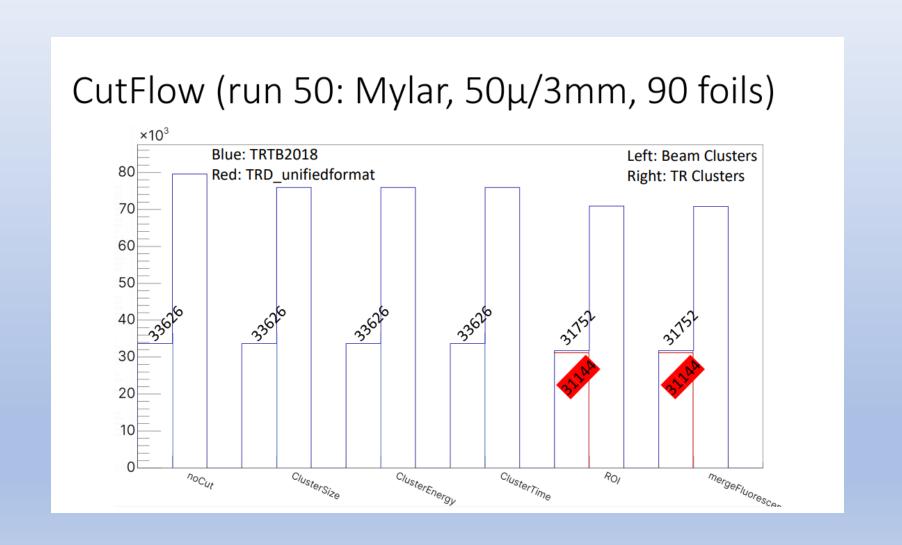
Результаты обработки данных с пиксельного детектора в эксперименте 2018 года по исследованию детектора из GaAs

GaAs-2018 test beam summary

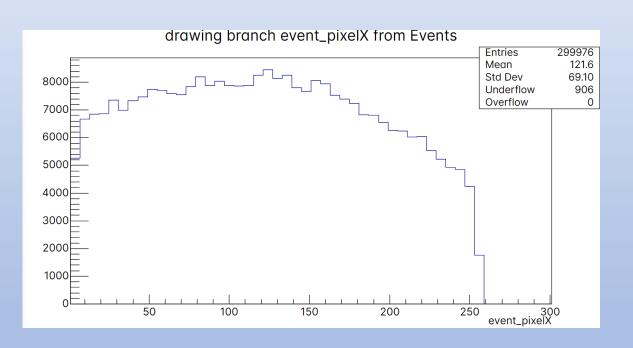
(run numbers and statistics)

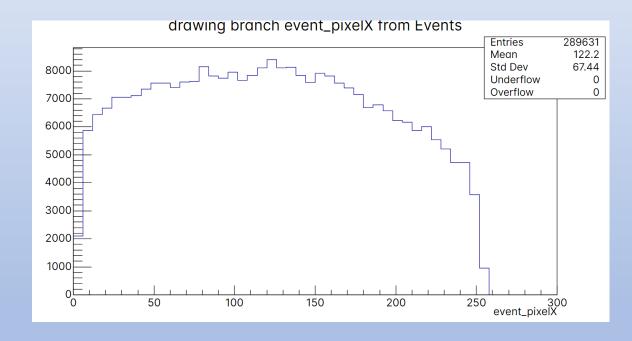
/eos/atlas/atlascerngroupdisk/det-trt-tb/testbeam2018/GaAs/Analysis/pass2/run**_3.root

It's actually calculated: 39846 (this is just an old table)

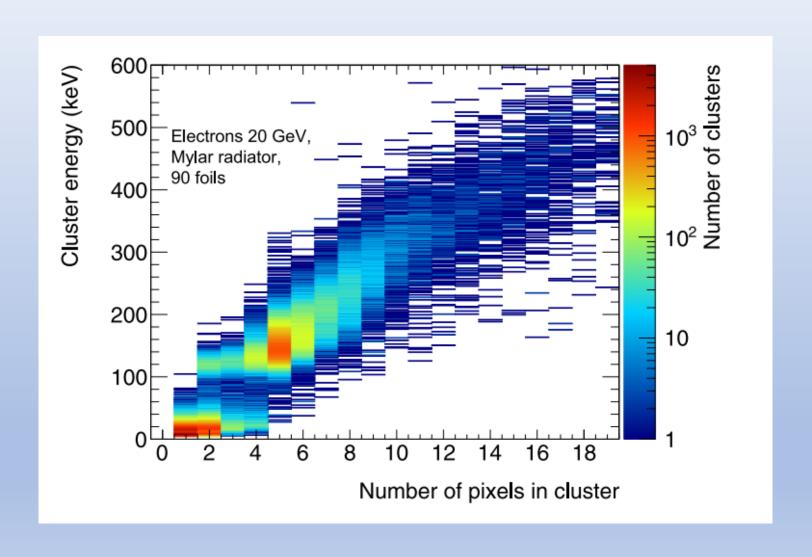

		Mylar		Polyethylene				/	_
		50μ/3mm		67µ/3mm		67/2	91/2.3	No radiator	Dummy radiator
		30 foils	90 foils	30 foils	90 foils	90 foils	30 foils	,	100000
e/π 20 GeV	2 m	32+51 11943+31201 11604+30394	31+50 12139+31752 11835+31144	35+53 22881+17772 22154+17335	33+34+52 7822+18838+20040 7694+18297+19801	36+54 23544+20437 22854+19995	37+55 23442+19080 22719+18647	38 22351 21595	39 22413 21613
	4 m	43 49887 48510	40+41+42 20926+2768+14352 20267+2692+13897	45 33602 32768	44 40497 empty	46+47 3415+29565 3376+29093	48 32992 32208	-	49 19023 18399
μ 120 GeV	2 m	2 82585 81855	1 88941 87748	4 96270 94250	3 96969 94973	5 97810 96761	6 87722 86760	-	7 90856 89637
	4 m	9 87606 86598	8 98229 97162	11+12 43768+49781 43287+49126	10 96893 94932	13+14 77279+29131 76363+28783	15 97570 96352	-	16 94856 93806
μ 180 GeV	2 m	25 64876 63539	24 64193 62891	27 63361 62100	26 64685 63400	28 61135 69937	29 42204 41321	-	30 21662 21187
	4 m	18 66070 64830	17 65147 63900	20 67246 65848	19 66876 64594	21 65643 64367	22 65069 63802	-	23 63830 62493
μ 290 GeV	2 m	61 40339 38906	62 29374 28325	59 36357 35019	60 38116 36849	57 45124 43592	56 36037 34703	-	58 39528 38142
	4 m	68 28001 26979	63 28443 27546	67 26626 25709	64 38173 36965	65 28100 27158	66+70 18558+17853 17911+17160	-	69 25963 24965

Statistics:


Upper: TRTB2018


Lower: TRD_unifiedformat

CutFlow для данных эксперимента 2018 года для двух разных программ обработки данных



Число вхождений в каждую колонку пикселей: слева - после обработки программой 2018 года, справа - 2020

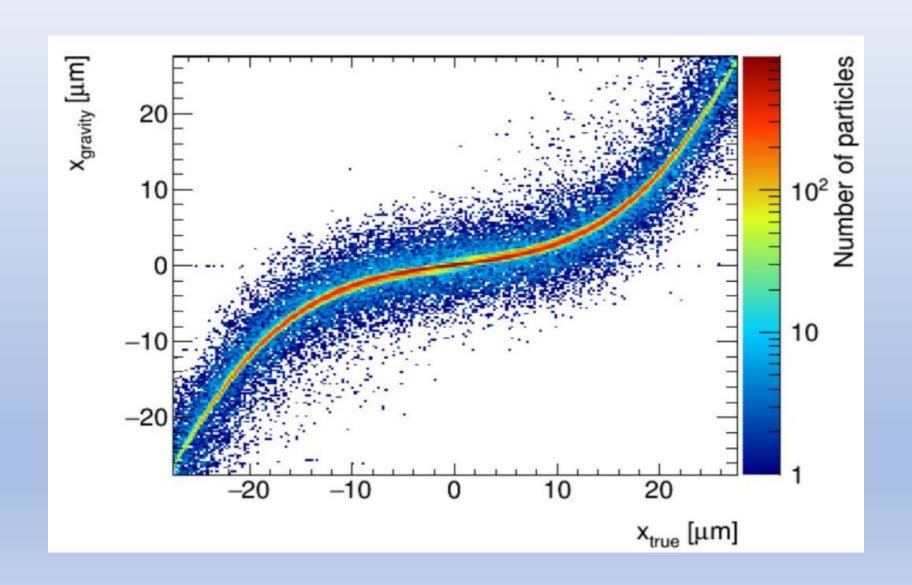


График зависимости энергии кластера в зависимости от его размера

S-кривая

Выводы

В связи с ошибкой в работе программы 2018 года необходимо отказаться от её использования и в дальнейшем опираться только на программу 2020 года

Метод центра тяжести (CoG) не дает самые лучшие значения координатной точности, необходима корректировка S-кривой (до корректировки значение точности около 11 мкм, после – будет получено в следующем семестре)

Планы на дальнейшую работу

Необходимо реализовать метод нахождения координатной точности и проверить улучшение значений при ориентировании на S-кривую для эксперимента 2017 года (пиксельный детектор из Si)