

Национальный исследовательский ядерный университет «МИФИ»

Кафедра физики элементарных частиц №40



Работа

Научная исследовательская работа студента на тему:

## Подбор материалов для детектора beam-beam counter эксперимента SPD

Научный руководитель: Тетерин П.Е.

студента 1-ого курса магистратуры Захарова Арсения Михайловича ИЯФиТ

## Цель работы

• Ознакомление с теорией работы детекторов;

• Ознакомление с экспериментом SPD;

• подбор материалов для прототипа детектора beam-beam counter эксперимента SPD;

#### Взаимодействие частиц с веществом основные механизмы

При прохождении частицы через вещество, она затрачивает свою энергию на следующие процессы:

- 1. Ионизация атомов вещества (Ионизационные потери);
- 2. Тормозное излучение (Радиационные потери; Замедление частицы в поле ядра => э/м излучение);
- 3. Многократное рассеяние на ядрах и электронах;
- 4. Ядерное взаимодействие (Фотоядерные реакции);
- 5. Переходное излучение (э/м излучение, наблюдаемое при прохождении з. ч. через границу раздела фаз);
- 6. Черенковское излучение.

Сцинтилляция – короткая вспышка света, вызванная прохождением ионизирующей частицы (быстрые электроны, протоны, гамма-кванты, альфа-частицы и другие з.ч.) через сцинтиллятор.

В процессе сцинтилляции фотон вспышки может не покинуть сцинтиллятор, а попасть из центра свечения в центр поглощения. Требования к сцинтиллятору:

- 1. Прозрачность для фотонов видимого света или ультрафиолета;
- 2. Спектр излучения сцинтиллятора должен быть смещен относительно спектра поглощения.

# Сцинтилляционные детекторы - устройство, основные сцинтилляторы, их разновидности

Сцинтиллятор – одна из двух обязательных частей сцинтилляционного детектора. Второй частью является фотоприемник, регистрирующий вспышку света, которая состоит из  $10^3 - 10^6$  фотонов (видимого света или ультрафиолета) и преобразовывающий это в сигнал (рис. 4). Одна регистрируемая частица создает много фотонов в сцинтилляторе, но один сигнал на выходе. Фотоприемником может служить ФЭУ, кремниевый ФЭУ (SiPM), или фотодиод.

При попадании гамма-кванта на фотокатод ФЭУ, он выбивает с его поверхности электрон (фотоэффект), который под действием сильного электрического поля дрейфует к динодам. За счет вторичной электронной эмиссии на диноде происходит размножение электронов, которые впоследствии дрейфуют к следующему диноду и т.д. Коэффициент умножения ФЭУ - отношение числа электронов, достигших анода к числу электронов, выбитых с фотокатода - составляет около M = 10<sup>6</sup>-10<sup>9</sup>.

Однако ФЭУ обладает достаточно сильными недостатками:

- 1. Большие размеры;
- 2. Высокое напряжение питания;
- 3. Чувствительность к внешнему магнитному полю.

Основными особенностями SiPM являются:

- 1. Ячейки одинаковые и независимые;
- 2. Высокий коэффициент усиления;
- 3. Нечувствительность к магнитным полям;
- 4. Хорошие временные характеристики.



Рис. 4. Модель сцинтилляционного детектора

## Основные задачи и устройство эксперимента SPD

Коллаборация Spin Physics Detector (SPD) предлагает установить универсальный детектор во второй точке взаимодействия коллайдера NICA (ОИЯИ, Дубна) для изучения спиновой структуры протона, дейтрона и других явлений, связанных со спином, с помощью поляризованных пучков протонов и дейтронов при энергии столкновения до 27 ГэВ.

В поляризованных протон-протонных столкновениях данный эксперимент покроет кинематический разрыв между низкоэнергетическими измерениями в экспериментах ANKE-COSY и SATURNE, и высокоэнергетическими измерениями, полученными на БАК (рис. 5).



## Основные задачи и устройство эксперимента SPD

Эксперимент SPD выполнен как универсальный  $4\pi$  детектор с улучшенной трекинг и идентификационной системами. Кремниевый координатный детектор предоставляет разрешение вершин на уровне менее 100 нм. Straw трекинг система расположена в магнитном поле до 1Тл, и расположена вдоль оси детектора, что должно давать разрешение поперечного импульса  $\sigma_{pT}/p_T \approx 2\%$  для частиц с импульсом 1 ГэВ. Времяпролетная система (PID) с разрешением около 60 пс способна предоставить разрешение 3 $\sigma$  при разделении  $\pi/K$  и K/p пучков с энергиями от 1.2

до 2.2 ГэВ соответственно. Детектирование фотонов происходит по средствам электромагнитного калориметра. Счетчик пучков (Beam-Beam counters) и калориметры нулевого угла отвечают за контроль светимости (рис. 6).



## **Beam-Beam Counters**

Два счетчика пучков планируется разместить перед системой PID в торцевых камерах SPD. Детектор будет состоять из внутренней и внешней частей, которые основаны на разных технологиях. Внутренняя часть BBC будет использовать быстрые сегментированные MicroChannel Plate (MCP) детекторы и должна работать внутри пучковой трубы, в то время как внешняя часть BBC будет изготовлена из быстрых пластиковых сцинтилляционных тайлов. Внутренняя часть охватывает ассерtance 30÷60 мрад и должна быть разделена на 4 слоя, состоящих из 32 азимутальных секторов. Внешняя часть, охватывающая полярные углы между 60 и 500 мрад, будет разделена на 6 концентрических слоев с 16 азимутальными секторами (рис. 7).

Основными целями ВВС являются:

- Локальная поляриметрия в SPD на основе измерений азимутальных асимметрий в столкновениях поперечно поляризованных пучков протонов;
- 2. Мониторинг столкновений пучков;
- Участие в точном определении времени
  столкновения t0 для событий, в которых
  другие детекторы не могут быть использованы.



Рис. 7. Строение ВВС – внутренняя и внешняя части

#### Моделирование тайл-системы









Рис 8. Тайл система эксперимента STAR EPD, RHIC

Рис. 9. Геометрия счетчика пучков, предложенная SPD

#### Моделирование тайл-системы







Рис 10. Модель тайл-системы, выполненная в геометрии SPD

Рис. 11. Сборка штатива



Рис. 12. Модель тайл-системы в Non-SPD геометрии

## ОПТИЧЕСКИЕ НАПОЛНИТЕЛИ

Съем света с тайлов происходит с помощью спектросмещающих волокон WLS, которые поглощают свет, излучаемый сцинтиллятором, и переизлучают его в диапозоне, близком к максимуму спектральной чувствительности фотоприемника. При использовании достаточно длинных сцинтилляционных стрипов с WLS-волокнами, вставленными в проточки, может оказаться недостаточным количество света, поступающего на фотоприемник, так как свет из сцинтиллятора захватывается волокнами через воздушный зазор. Вклеивание волокон внутри проточек увеличивает светосбор.

STAR EPD, RHIC – Eljen EJ-500

| PROPERTIES                                | EJ-500                 |               |                  | EJ-500 OPTICAL TRANSMISSION<br>0.125 mm THICK |                                       |  |  |  |  |
|-------------------------------------------|------------------------|---------------|------------------|-----------------------------------------------|---------------------------------------|--|--|--|--|
| Mixed Viscosity (cps)                     | 800                    |               |                  |                                               |                                       |  |  |  |  |
| Bond Strength (psi)                       | 1800                   | 100           |                  | $\rightarrow$                                 |                                       |  |  |  |  |
| Dielectric Strength (volts/mil)           | 420                    | <b>NO</b> 80  | $\left( \right)$ |                                               |                                       |  |  |  |  |
| Specific Gravity, Cured                   | 1.17                   | SSIN 60       |                  |                                               |                                       |  |  |  |  |
| Service Temperature (°C)                  | -65 to +105            | NSN           |                  |                                               |                                       |  |  |  |  |
| Volume Resistivity, 25°C (ohm-cm)         | 1014                   | <sup>40</sup> |                  |                                               |                                       |  |  |  |  |
| Coefficient of Thermal Expansion (per °C) | 7.2 x 10 <sup>-5</sup> | × 20          |                  |                                               |                                       |  |  |  |  |
| NASA Outgassing Properties                |                        | 0             | ļ                |                                               |                                       |  |  |  |  |
| Mass Loss (%)<br>Condensed Volatiles (%)  | 1.69<br>0.04           | 3             | 00               | 350                                           | 400 450 500 550 60<br>WAVELENGTH (nm) |  |  |  |  |

#### ОПТИЧЕСКИЕ НАПОЛНИТЕЛИ

Среди всех представленных вариантов, были отобраны три потенциальных наполнителя. Их характеристики приведены на рисунке 15.

| Марка      | Вязкость, | Диапозон    | Спектральные                    | Показатель  |
|------------|-----------|-------------|---------------------------------|-------------|
|            | cPs       | рабочих     | характеристики                  | преломления |
|            |           | температур  |                                 |             |
| EJ-500     | 800       | От -65      | 60-95% 300-350 nm,              | 1.574       |
|            |           | до +105 °C  | 95-100% 350-600 nm              |             |
| EPO-TEK    | 225 - 425 | Комнатная   | 94% 320 nm,                     | 1.5318      |
| 301-2      |           | температура | 99% 400-1200 nm,                | 589  nm     |
|            |           | - +65 °C    | 98% 1200-1600 nm                |             |
| EPO-TEK    | 100 - 200 | Комнатная   | 99% 382-980 nm,                 | 1.519       |
| 301        |           | температура | 97% 980-1640 nm,                | 589  nm     |
|            |           | - +65 °C    | $95\% \ 16402040 \ \mathrm{nm}$ |             |
| Оптический |           | От -60      | 98% 400-950 nm                  | 1.54        |
| клей Луч-2 |           | до +125 °C  |                                 |             |

Рис. 13. Оптические наполнители и их характеристики

Наполнитель EPO-TEK 301-2 имеет наиболее схожие с EJ-500 спектральные характеристики и малую вязкость, однако сильно разнится в диапазоне рабочих температур. Наполнитель марки EPO-TEK 301 имеет еще более низкую вязкость и более хорошее разрешение для малых длин волн λ = 380 нм, но имеет худший показатель преломления. В свою очередь "Луч-2"имеет более устойчивый диапазон температур, чем EJ-500, самый близкий к искомому показатель преломления, однако сильно проигрывает спектральных характеристиках. Так как EPO-TEK 301 является менее удовлетворяющим аналогом 301-2, в будущем планируется заменить его на низкомолекулярный каучук «СКТН-МЕД» марки Е и провести детальное сравнение наполнителей, с целью выявить наиболее подходящий для данной работы.

#### Заключение

В данной работе :

- 1. Освещены теоретические сведения о принципе работы сцинтилляционных детекторов;
- 2. Освещены теоретические сведения о целях и строении эксперимента SPD и счетчика пучков;
- Построена предполагаемая модель тайл-системы для счетчика пучков, а так же модель штатива, с помощью которого будет проведено тестирование подбираемых материалов;
- 4. Подобраны несколько оптических наполнителей, подходящих под цели работы.

В будущем планируется изготовление прототипов и тестирование сцинтилляторов на реальных источниках ионизирующего излучения, сравнение отобранных оптических наполнителей, а так же моделирование всей тайл-системы в программном пакете GEANT4.

## Спасибо за внимание!

#### **BACK UP**

## Введение

В настоящее время существует большое количество экспериментов в области физики высоких энергий, каждый из которых специализируется на различных промежутках энергии столкновений, изучаемой физической величине, поиску новых частиц или открытию новых элементов и т.д. Первым шагом на пути анализа полученных данных, или же проектировании детектирующей установки, является изучение процессов, происходящих в слоях этих установок по средствам взаимодействия частиц с мишенями или средой объема детектора.



X10<sup>3</sup> increases in DAQ rate since 2000, most precise Silicon Detector (HFT)



PHENIX, RHIC

ATLAS, LHC (CERN)

STAR, BNL