# with Low <mu> data W-Ai measurements



Daniil Ponomarenko

10-March-2023

Motivation

- Brief analysis overview
- Updates on MJ estimation



1

ATLAS Note ANA-STDM-2020-07-INT1 3rd February 2023



Measurement of angular coefficients in  $W \rightarrow \ell v$ events in low- $\mu$  pp collisions at  $\sqrt{s} = 13$  TeV with the ATLAS detector

*Link to CDS: <u>https://cds.cern.ch/record/2824052</u> (last modified 2022-09-30). <i>Latest version of supporting note is in attachments to the agenda.* 

# Motivation



Larger source of modelling uncertainty from PDFs

 Total uncertainty on ATLAS W mass measurement ~19MeV still larger than 8MeV from electroweak fit

## Why measure Ai in W events?

| D | hy | /si | cs | m | od | e | ling |
|---|----|-----|----|---|----|---|------|
| - | _  | _   |    |   |    |   | _    |

| Data sample               | 7 TeV, $\mu \sim 9$  |               |
|---------------------------|----------------------|---------------|
| Luminosity                | $4.5 { m ~fb^{-1}}$  | Improuved     |
| Nb. of candidates         | $\sim 15 	imes 10^6$ |               |
| Most sensitive dist.      | $p_T^\ell$           |               |
| Physics Modelling Unc.    |                      |               |
| $\mathbf{EW}$             | 5 → latest MC        | gen. 2        |
| QCD $(p_T^W)$             | 6 → WpT mea          | <u>s.</u> < 3 |
| $\operatorname{QCD}(A_i)$ | 6 → data input       | < 3           |
| PDFs                      | 9→ PDF profi         | ling 6        |
|                           |                      |               |

#### • W-Ai analysis (+ x-section):

- $A_i$ : Stringent test of QCD & physics modelling!
- X-section measurement as function of the *Y*.
  - $\circ~$  All previous measurements at the LHC are done with lepton  $\eta.$
- Charge asymmetry measurement: Input for PDF fits

#### $\circ$ Full set of $A_i$ have never been measured before for the W boson!

 $^\circ~$  Only  $A_2$  and  $A_3$  were measured by CDF (Phys. Rev. D 73, 052002)

## Vector boson production and decay

• Drell Yan  $pp \rightarrow V \rightarrow l\bar{l}$  cross section can be factorised into an **unpolarised** cross-section and **8 angular coefficients**  $(A_i)$ .



#### • The angular coefficients:

- $A_0, A_1, A_2$  sensitive to vector boson **polarisation** 
  - $A_0 A_2 = 0$  but violated due to higher order QCD effects (e.g. multi-gluon emission..)
- $\circ A_3$ ,  $A_4$  sensitive to **vector and axial couplings** of the boson
  - $A_4$  directly related to  $A_{FB}$ , probes electroweak mixing
- $A_5, A_6, A_7$  non-zero only at  $\mathcal{O}(\alpha_s^2)$
- $^\circ\,$  QCD production dynamics fully contained in  $A_i$  coefficients, while decay kinematics fully contained in coupled angular polynomials

#### In Collins-Soper frame:



# Analysis overview

## W Ai analysis overview

#### • Supporting note: <u>ANA-STDM-2020-07-INT1</u>

#### • Dataset:

- $\circ$  ATLAS 13 TeV low pileup datasets 335.18  $pb^{-1}$
- Statistically limited by small datasets but provides hadronic recoil resolution needed
- $\circ$  Able to measure 1D in  $p_T^W$  and separately in  $y^W$
- $\circ$  We focus on the larger coefficients  $A_0, A_2, A_3, A_4$ 
  - $\circ$  Other coefficients are also get measured, but the analysis is far from having sensitivity to  $A_5, A_6, A_7$
- Channels:
  - $\circ \ W^- \rightarrow e^- \nu, W^+ \rightarrow e^+ \nu, W^- \rightarrow \mu^- \nu, W^+ \rightarrow \mu^+ \nu$
- Looking forward for EB request

| Electron                           | Muon                    |  |  |  |
|------------------------------------|-------------------------|--|--|--|
| Tight ID                           | Medium ID               |  |  |  |
| р <sub>т</sub> > 25 GeV            |                         |  |  |  |
| η  < 2.4                           |                         |  |  |  |
| 1.37 <  η  < 1.52                  |                         |  |  |  |
| ptvarcone20/p <sub>T</sub> < 0.1   |                         |  |  |  |
| topoetcone20/p <sub>T</sub> < 0.05 |                         |  |  |  |
| d <sub>0</sub> sig  < 5            | d <sub>0</sub> sig  < 3 |  |  |  |
| $\Delta z_0 \sin \theta < 0.5$     |                         |  |  |  |

# $^{\circ}$ We use signal region selection based on pTW analysis with optimizations for better $A_i$ sensitivity

- Use same physics objects calibrations
- + estimate and apply corrections specific for Wai analysis

#### • Relaxed kinematic cuts:

- No  $E_T^{miss} > 25 \ GeV$  cut
- No  $m_T^W > 50 \ GeV$  cut
- Use *TightLH* working point for electrons
- Tighter isolation selection:
  - ptvarcone20/pt<0.1 && topoetcone20/pt<0.05</li>

## Analysis

# Angular definitions require fully constructed neutrino (will cover in next slides):

- $\,\circ\,$  Using Hadronic recoil solve for Neutrino  $p_{Z}$  with mass constrain.
- Once the mass constraint is chosen  $\varphi_{CS}$  is solved while the 2 solutions corresponds to a sign ambiguity in  $\cos \theta_{CS}$ .
- Discovered that adding sign ambiguity only in  $y^W$ , not in  $\cos\theta_{CS}$  drives our  $A_4$  sensitivity.

# MJ shape estimation follows procedure used by pTW analysis (slides in backup):

- Calculate MJ normalization by linear extrapolation fit for different anti-isolation slices
- Calculate MJ template shape by applying bin-by-bin linear shape extrapolation
- To get MJ shape as a function of |Y| and  $p_T^{l,\nu}$  MC samples used:  $b\overline{b} + c\overline{c}$  for W $\rightarrow \mu\nu$  channels, JF17 for W $\rightarrow e\nu$  channels
- $\circ~$  Calorimetric isolation used for e± and track isolation used for  $\mu \pm$  channels:

  - Slicing in topoetcone20/pt for W $\rightarrow$ e $\nu$ : 8 slicing bins from 0.05 to 0.45





## Control plots in the Signal Region for $W^- \rightarrow e^- \nu$



10.03.2023

## Control plots in the Signal Region for $W^- \rightarrow \mu^- \nu$



## Fitting method

Reference coefficients created by taking moments of the polynomials using truth MC

 $\langle P_i(\theta,\varphi)\rangle = \frac{\int d\sigma \left(p_T, m, y, \theta, \varphi\right) P_i(\theta,\varphi) d\cos\theta d\varphi}{\int d\sigma \left(p_T, m, y, \theta, \varphi\right) d\cos\theta d\varphi}$ 

Truth phase space is folded into the reco phase space through polynomial templates.

Extraction of coefficients through likelihood fit of MC templates in  $p_{T}^{l,\nu}$  and  $y^{l,\nu}$  bins.

Polynomial templates differ to ZAi analysis by extending  $\cos\theta_{CS}$  range to save information for events with no real solution.



 $\langle \cos \theta \rangle = \frac{1}{4} A_4$ 

## Systematics

- Have largest expected systematics included (MJ, cross-section variation, hadronic recoil, and MC stat) and understood.
- Adding remaining systematics (PDF<sup>[1]</sup> and lepton)
- Large constraint on MJ systematics from very conservative estimation<sup>[2]</sup>.



## Systematics

W<sup>-</sup>ev NPs, pt<sup>ev</sup> Binning



Pseudo data  $(p_T^{l,\nu})$ 



10.03.2023

Daniil Ponomarenko

16

# Systematic uncertainties ( $p_T^{l, \nu}$ )



 $\circ$  Expect uncertainty to be stat dominated for all bins for both  $p^W$  and  $y^W$  differential measurements

Pseudo data  $(y^{l,\nu})$ 



## Systematic uncertainties $(y^{l,\nu})$



 $\circ$  Expect uncertainty to be stat dominated for all bins for both  $p^W$  and  $y^W$  differential measurements

## Current status

#### • Goal of the measurement

- measure  $A_i$  in W events
- important input to W mass measurement and PDF fits
- main targets:  $A_4$  (forward-backward asymm.),  $A_0 A_2$  (Lam-Tung), charge asymmetry

#### • Measurement status:

- Use W events in low-μ data (less statistics, but better hadronic recoil resolution)
- $\,\circ\,$  Solve for neutrino  $p_z$  via W mass constraint
- $\circ$  Study of sensitivity of this analysis to  $A_4$
- MJ background estimate is in place. Other backgrounds added and understood.
- Inclusion of hadronic recoil systematics and background systematics.
- Electron and muon channel combined fit also working.

#### • ToDo:

- Refine MJ systematics correlation uncertainty model (MJ NPs heavily constrained, still being understood)
- Fit doesn't work with real data
- Add remaining systematics
- Prepare for EB request

# MJ estimation updates

## MJ background in WAi analysis (1): inclusive SR



 $\circ\,$  Calorimetric isolation used for e± and track isolation used for  $\mu\pm$  channels:

- ° Slicing ptvarcone20/pt for W→ $\mu\nu$ : 8 slicing bins from 0.1 to 0.5
- Slicing in topoetcone20/pt for W $\rightarrow e\nu$ : 8 slicing bins from 0.05 to 0.45

- MJ bkgd estimate has 2 "steps":
  - Calculate MJ normalization
    - Repeat MJ estimation for different anti-isolation slices
    - Fit linear function
    - Extrapolate back to SR
  - Calculate MJ template shape:
    - MJ distributions in anti-iso slices don't match SR shape
    - Apply bin-by-bin linear shape extrapolation
    - Assign 100% uncertainty

### • Use 4 discriminative variables:

- $p_T^l, m_T, E_T^{miss}, |\Delta \varphi(l, E_T^{miss})|$
- In the fit use fixed EWT background normalization.
- $\circ$  To get MJ shape as a function of |Y| and  $p_T^{l,\nu}$  following samples used:
  - $b\bar{b} + c\bar{c}$  for W $\rightarrow \mu\nu$  channels
  - ∘ JF17 for W $\rightarrow$ e $\nu$  channels

## MJ background in WAi analysis (2): inclusive SR



- The error bars are multiplied by  $\sqrt{\chi^2/NDoF}$
- Take final MJ yield as mean at ptvarcone20/pt=0.025
- Less MJ background contribution for muon channel (as expected).
- Dominant MJ yield uncertainty comes from intersection point.





- Calculate shape correction using isolation slices for final MJ templates.
- Given the large statistical uncertainty and the linear approximation used, the shift ΔH[X] applied is assigned a 100% relative uncertainty.
  - Small wrt intersection point.

## MJ Systematics Summary (inclusive signal region)

|                              | Using topoetcone20/p <sub>T</sub> |                       | Using $ptvarcone20/p_T$ |                         |
|------------------------------|-----------------------------------|-----------------------|-------------------------|-------------------------|
| Channel                      | $W  ightarrow e^-  u$             | $W  ightarrow e^+  u$ | $W  ightarrow \mu^-  u$ | $W  ightarrow \mu^+  u$ |
| Total Number of MJ bkg       | 231472                            | 232268                | 127056                  | 132995                  |
| Luminosity and cross section | $\pm 7199$ (3.11%)                | $\pm 9098$ (3.92%)    | $\pm 547~(0.43\%)$      | $\pm 698~(0.52\%)$      |
| Intersection point           | $\pm 22928$ (9.91%)               | $\pm 24910$ (10.72%)  | $\pm 13313$ (10.48%)    | $\pm 12276$ (9.23%)     |
| Extrapolation target         | $\pm 1246$ (0.54%)                | $\pm 1172$ (0.50%)    | $\pm 1575$ (1.24%)      | $\pm 1433$ (1.08%)      |
| Choice of hists              | ±7643 (3.30%)                     | ±8303 (3.57%)         | ±4438 (3.49%)           | ±4092 (3.08%)           |
| Isolation correction         | N/A                               | N/A                   | N/A                     | N/A                     |
| Correlated Uncertainty       | ±24032 (10.38%)                   | $\pm 26519$ (11.42%)  | $\pm 13324$ (10.49%)    | $\pm 12296$ (9.25%)     |
| Data Stat.                   | ±490 (0.21%)                      | ±463 (0.20%)          | $\pm 795~(0.63\%)$      | $\pm 809~(0.61\%)$      |
| MC Stat.                     | $\pm 262~(0.11\%)$                | $\pm 229~(0.10\%)$    | $\pm 990~(0.78\%)$      | $\pm 880~(0.66\%)$      |
| Shape Correction             | $\pm 2961$ (1.28%)                | $\pm 2769$ (1.19%)    | ±927 (0.73%)            | $\pm 915~(0.69\%)$      |
| Uncorrelated Uncertainty     | $\pm 3012$ (1.30%)                | $\pm 2816$ (1.21%)    | $\pm 1572$ (1.24%)      | $\pm 1505~(1.13\%)$     |









## MJ templates for $\cos\theta_{CS}$ vs. $\varphi_{CS}$ : inclusive SR



• The 2D templates are derived in the same way as described for 1D histograms

## MJ shape as function of |Y| and $p_T^{l,\nu}$ : task definition



W-Ai analysis uses more complicated approach:

• Building 2D histograms  $\cos \theta_{CS}$  vs.  $\phi_{CS}$  as function of  $\eta$  or  $p_T^{\ell,\nu}$ 

 $p_T^{\ell,\nu}$ : [0, 8, 17, 27, 40, 55, 75, 110, 150, 210, 600]; |Y|: [0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 3.6]

Above 100 GeV the data/MC agreement in the p<sup>ℓ,ν</sup><sub>T</sub> degradate due to missing truth p<sup>W</sup><sub>T</sub> reweighting correction above this range.

## Closure test by DD method: coarse bins

 $p_T^{\ell,\nu}: [0, 17, 55, 600];$ |Y|: [0, 0.8, 2.0, 3.6]



## MJ shape as function of |Y| and $p_T^{l,\nu}$ : studies

 $p_T^{\ell,\nu}$ : [0, 17, 55, 600]; |Y|: [0, 0.8, 2.0, 3.6]

- $^\circ\,$  There are strong dependence of the  $\cos\theta_{CS}$  MJ template shape as function of  $|Y^{l,\nu}|$  and  $\varphi_{CS}$  as a function of  $p_T^{l,\nu}$
- Acceptance correction functions were built to correct MJ data-driven template derived in the SR to the given  $|Y^{l,v}|$  or  $p_T^{l,v}$  slice using the samples:
  - $b\bar{b} + c\bar{c}$  for W $\rightarrow \mu\nu$  channels
  - JF17 for W $\rightarrow e\nu$  channels

$$A_j = h_{MC}^{bin_j} / h_{MC}^{SR} \qquad h_{MJ}^{bin}$$

$$b_{MJ}^{in_j} = h_{MJ,data}^{SR} \times A_j$$

• Acceptance correction functions for number of  $|Y^{l,v}|$  bins, fully uncorrelated uncertainty on these acceptance correction functions is applied on the MJ estimate:





Data-driven MJ derived for 3 individual regions in |Y|:





### Acc. corr. function: closure test

 $p_T^{\ell,\nu}$ : [0, 17, 55, 600]; |Y|: [0, 0.8, 2.0, 3.6]



## MJ shape as function of |Y| and $p_T^{\ell,\nu}$

- There are strong dependence of the  $\cos \theta_{CS}$  MJ template shape as function |Y| and  $\phi_{CS}$  as function of  $p_T^{\ell,\nu}$
- Acceptance correction functions were build using QCD MC samples to correct MJ data-driven template derived in the SR to the given |Y|or  $p_T^{\ell,\nu}$  slice:  $h_{MJ}^{bin_i} = h_{MJ}^{SR} \cdot h_{QCDMC}^{bin_i} / h_{QCDMC}^{SR}$



#### Problem:

- Comparing to MJ template given by AccCocc in the last p<sup>l, v</sup><sub>T</sub> bin for e<sup>-</sup> with the DD MJ, last one predicts higher MJ contribution to the no solution bin + overall shape differs a lot.
- DD MJ template derived from SR might be "too far" from DD MJ template derived for  $p_T^{\ell,\nu} > 55$  GeV bin.
- We might not see this effect in muons due to the fact this channel is "cleaner".
- Integrated distributions for Y coarse bins looks good due to small MJ fraction for the last coarse  $p_T^{\ell,\nu}$  bin. **Solution:**  $p_T^{\ell,\nu} : [0, 17, 55, 600];$ 
  - Instead of using SR use the coarse bins:  $h_{QCDMC}^{CoarseBin_k}$  and  $h_{MJ}^{CoarseBin_k}$ .  $\begin{vmatrix} p_T \\ |0,17,33,000 \end{vmatrix}$ ; |Y| : [0,0.8,2.0,3.6]

### Some W-Ai control plots and $e/\mu$ compatibility

Compare 2  $p_T^{\ell,\nu}$  bins: 17  $< p_T^{\ell,\nu} <$  27 GeV and 150  $< p_T^{\ell,\nu} <$  210 GeV 25 0.25 Double ratio / 0.25 Ge< ATLAS Internal 50 - Data 0 Data/MC  $[W \rightarrow e^{+}v]$  / Data/MC  $[W \rightarrow \mu^{+}v]$ Events/( Stat. Uncert. Events/ 25F Stat. Uncert. Stat. Uncer  $17.00 < p_{T}^{l_{V}} < 27.00$ 17.00 < p - 17.00 < p\_ 11. Stat 
Syst 2.36 < 0 Stat @ Svs < 3.14 2.36 < 0 < 3.14  $2.36 < \phi_{cs} < 3.14$ 1.5 <sup>2</sup>/dof = 88.12/8 Stat. only: y<sup>2</sup>/dof = 304.49/8 20Èχ<sup>2</sup>/dof = 14.35/8 Stat. only: χ<sup>2</sup>/dof = 68.74/8 27 30 20 V  $p_{\mathsf{T}}^{\ell,\nu}$ 1111+ Model Data / Model Data 17 0.8 0.8 0.5 -0.50.5 -0.50.5 -0.5 0 n 0 0.5 1.5 1.5 cosθ<sub>cs</sub>  $\cos\theta_{CS}$ cosθ<sub>cs</sub> 25 Events / 0.25 Double ratio / 0.25 ATLAS Interna ATLAS Internal - Data Events/0 Data/MC [ $W \rightarrow e^{i}v$ ] / Data/MC [ $W \rightarrow \mu^{i}v$ ] 210 GeV  $W \rightarrow \mu' \nu$ Stat. Uncert.  $150.00 < p_{-}^{l,v} < 210.00$  $150.00 < p_{-}^{1/2} < 210.00$ Top Diboson Stat. Uncert. 150.00 < p<sup>1</sup>/<sub>+</sub> < 210.00 Stat. Un 1// Stat 
Syst 2.36 <  $\phi_{cs}^{T}$  < 3.14 MultiJet Z  $\rightarrow \tau \tau$  $\chi^{2}/dof = 75.94/8$  Stat. only:  $\chi^{2}/dof = 282.92/8$ MultiJet 🔂 Z-+rr 🥠 Stat ⊕ Svst Z→µµ Z→TT 2.36 < \$\$\phi\_{0}\$ < 3.14 2.36 < \u00e9\_c < 3.14 1.5⊢ 0.8 x<sup>2</sup>/dof = 14.38/8 Stat. only: χ<sup>2</sup>/dof = 23.49/8 0.5 V 1////+ / Model Data / Model  $150 < p_T^{\ell, 
u}$ Data 0.8 0.5 -0.5 0 0.5 -0.5 0.5 -0.5 0.5 1.5 1.5 cosθ<sub>cs</sub>  $\cos\theta_{CS}$  $\cos\theta_{CS}$ 

Note: discrepancy in the no solution bins in pTW>100 GeV is from absence of the PTRW

Before

## Test with 1D $\cos \theta_{CS}$ integrated over $\phi_{CS}$ in some $p_T^{\ell,\nu}$ bins Instead of using SR use the coarse bins: $h_{QCDMC}^{CoarseBin_k}$ and $h_{MJ}^{CoarseBin_k}$ .



Note: discrepancy in the no solution bins in pTW>100 GeV is from absence of the PTRW

Before

After

### Test with 3D W-Ai control plots



Only some  $p_T^{\ell,\nu}$  coarse bins and  $\phi_{CS}$  slices are shown.

Note: discrepancy in the no solution bins in pTW>100 GeV is from absence of the PTRW

10.03.2023

Daniil Ponomarenko

After

# MJ templates for W-Ai analysis in $p_T^{l,\nu}$ binnning



 $p_T^{\ell,\nu}$ : [0, 8, 17, 27, 40, 55, 75, 110, 150, 210, 600];

Daniil Ponomarenko

 $W^- \rightarrow e^- \overline{\nu}$ 

## MJ templates for W-Ai analysis in |Y| binnning $W^- \rightarrow e^- \overline{\nu}$



# MJ templates for W-Ai analysis in $p_T^{l,\nu}$ binnning $W^- \rightarrow \mu^- \overline{\nu}$



 $p_T^{\ell,\nu}$ : [0, 8, 17, 27, 40, 55, 75, 110, 150, 210, 600];

## MJ templates for W-Ai analysis in |Y| binnning $W^- \rightarrow \mu^- \overline{\nu}$



10.03.2023

### MJ systematics naming convention

Ludovica proposed a new naming convention.

Since xTR produces output for each  $p_T^W$  and  $Y^W$  bin, I dropping channel and bins numbering from the naming in the WS. Still, this naming convention should be easy to restore later in AiDY.

| Name                                                                                                                                       | # NP in AiDY                 | Comments                                                                                                                                                                                                         |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| mj_yield_cor                                                                                                                               | 1                            | MJ yield extrapolation (bin-by-bin correlated, two-sided).                                                                                                                                                       |  |  |
| mj_shape 3 for $p_T^W$ / 3 for $Y^W$ MJ shape of the given $\cos \theta_{CS} :: \phi_{CS}$ distribution (bin-by bin uncorrelated, two-side |                              | MJ shape of the given $\cos \theta_{CS} :: \phi_{CS}$ distribution in the coarse bin (bin-by bin uncorrelated, two-sided)                                                                                        |  |  |
| mj_acc_cor_closure                                                                                                                         | 3 for $p_T^W$ / 3 for $Y^W$  | Apply difference between DD template and MC corrected template as<br>acc corr sys uncertainty. This syst. is correlated within $p_T^W$ and $Y^W$<br>coarse bin. (bin-by-bin uncorrelated, <b>Q: two-sided?</b> ) |  |  |
| mj_acc_cor_stat                                                                                                                            | 10 for $p_T^W$ / 7 for $Y^W$ | Basically stat power of the QCD MC sample in the coarse and slicing<br>bin used to fold MJ DD from coarse bin to the subregion. (bin-by-bin<br>uncorrelated, two-sided)                                          |  |  |
| mj_acc_cor_sys                                                                                                                             | 10 for $p_T^W$ / 7 for $Y^W$ | Apply systematic as 100% on the acceptance correction it-slef.<br>(bin-by-bin uncorrelated, <b>Q: two-sided?</b> )                                                                                               |  |  |

**Note:** The "mj\_yield\_uncor" systematic is the MJ shape unc. in the SR for  $p_T^W$  (or  $Y^W$ ) distribution. It affects yield normalisation in the given slice bin and it should be associated with 10 for  $p_T^W$  / 7 for  $Y^W$  NP. Impact of this syst. is huge, especially in the hard  $p_T^W$  region. We had agreed in July 2022 **not to use** "mj\_yield\_uncor" systematic in the fit. **Coarse bins:**  $p_T^{\ell,\nu}$ : 0 - 17 GeV, 17 - 55 GeV, 55 - 600 GeV; |Y|: 0 - 0.8, 0.8 - 2.0, 2.0 - 3.6.

## Systematic uncertainties breakdown

![](_page_38_Figure_1.jpeg)

Figure 237: Multi-jet background shape systematics breakdown for  $\cos \theta_{CS}$  as slices of  $\phi_{CS}$  for  $0 < p_T^{\ell,\nu} < 8$  GeV bin for  $W^- \to e^- \overline{\nu}$  channel.

## Systematic uncertainties breakdown

![](_page_39_Figure_1.jpeg)

Figure 242: Multi-jet background shape systematics breakdown for  $\cos \theta_{CS}$  as slices of  $\phi_{CS}$  for 55 <  $p_T^{\ell,\nu}$  < 75 GeV bin for  $W^- \rightarrow e^- \overline{\nu}$  channel.

## Systematic uncertainties breakdown

![](_page_40_Figure_1.jpeg)

Figure 246: Multi-jet background shape systematics breakdown for  $\cos \theta_{CS}$  as slices of  $\phi_{CS}$  for  $210 < p_T^{\ell,\nu} < 600$  GeV bin for  $W^- \rightarrow e^- \overline{\nu}$  channel.

## Ongoing tasks / problems

### • Fit doesn't work with real data ( $\rightarrow$ Alex)

- Works fine with Asmov and pseudo-data. For real data could not find minimum.
- Perform cross-check using reco level only (Daniil)
  - Fit stability
  - MJ systematics constrains
- New NTuple production ( $\rightarrow$  Daniil)
  - Apply new PTRW for pTW>100 GeV
  - Apply additional ID and iso SF systematics
  - Simplify systematics production

### $\circ$ PDF studies ( $\rightarrow$ Grigorii)

- Theoretical predictions for multiple PDF sets and compare PDF uncertainties
  - CT10NLO, CT18NNLO, NNPDF4.0NNLO, MMHT20

![](_page_42_Picture_0.jpeg)

# Thanks for attention!

## Control Plots in the Signal Region for $W^+ \rightarrow e^+ \nu$

![](_page_43_Figure_1.jpeg)

10.03.2023

## Control Plots in the Signal Region for $W^+ \rightarrow \mu^+ \nu$

![](_page_44_Figure_1.jpeg)

## Collins Soper Frame

![](_page_45_Figure_1.jpeg)

• Special W boson rest frame where angles are defined by lepton and proton kinematics.

• Define using "negative" lepton, so for W+ case this is the neutrino

## Polynomial Information

| Ai    | Pi                                | $\mathbf{Y_{l}^{m}}\left( 	heta,\phi ight)$ | Coupling                                                         | Non-Zero                       |
|-------|-----------------------------------|---------------------------------------------|------------------------------------------------------------------|--------------------------------|
| $A_0$ | $1/2\left(1-3\cos^2\theta\right)$ | $Y_2^0$                                     |                                                                  | $O\left( lpha _{S}^{1} ight)$  |
| $A_1$ | $\sin 2\theta \cos \phi$          | $\left(Y_2^{-1}-Y_2^1\right)$               | $\left(v_{\ell}^2 + a_{\ell}^2\right)\left(v_q^2 + a_q^2\right)$ | $O\left( lpha _{S}^{1} ight)$  |
| $A_2$ | $1/2\sin^2\theta\cos 2\phi$       | $(Y_2^{-2} + Y_2^2)$                        | · · · · ·                                                        | $O\left( lpha _{S}^{1} ight)$  |
| $A_3$ | $\sin\theta\cos\phi$              | $(Y_1^{-1} - Y_1^1)$                        | $v_\ell a_\ell v_q a_q$                                          | $O\left( lpha _{S}^{1} ight)$  |
| $A_4$ | $\cos 	heta$                      | $Y_{1}^{0}$                                 |                                                                  | $O\left( lpha _{S}^{0} ight) $ |
| $A_5$ | $\sin^2 \theta \sin 2\phi$        | $(Y_2^{-2} - Y_2^2)$                        | $\left(v_{\ell}^2 + a_{\ell}^2\right)\left(v_q a_q\right)$       | $O\left(\alpha_{S}^{2}\right)$ |
| $A_6$ | $\sin 2\theta \sin \phi$          | $(Y_2^{-1} + Y_2^1)$                        |                                                                  | $O\left( lpha_{S}^{2} ight)$   |
| $A_7$ | $\sin \theta \sin \phi$           | $\left(Y_1^{-1}+Y_1^1\right)$               | $(v_\ell a_\ell) \left( v_q^2 + a_q^2 \right)$                   | $O\left( lpha_{S}^{2} ight)$   |

![](_page_47_Figure_1.jpeg)

## Angular Coefficients

![](_page_48_Figure_1.jpeg)

Full angular cross-section parameterization

 QCD production dynamics fully contained in Ai coefficients, while decay kinematics fully contained in coupled angular polynomials

## Neutrino reconstruction

#### Angular definitions require fully constructed neutrino

#### • Hadronic recoil:

- Vectorial sum of all transverse momenta of ISR objects
- ATLAS: uses PFlow objects (neutral+charged)

#### $\circ$ Solving for Neutrino $p_z$ :

- Take mass constraint resulting in quadratic equation
  - $\circ \ (q_l + q_{\nu})^{\mu} \ (q_l + q_{\nu})_{\mu} = \ m_W^2$
- $m_T < m_W$  gives 2 solutions
  - one chosen at random but can statistically resolve correct distributions
- $\circ\,$  No real solution when  $m_T$  >  $m_W$  , still can use events for  $\varphi_{CS}$  information
- $^\circ$  Once the mass constraint is chosen  $\varphi_{CS}$  is solved while the 2 solutions corresponds to a sign ambiguity in  $\cos\theta_{CS}$

![](_page_49_Figure_12.jpeg)

# $cos\theta_{CS}$ ambiguity (1)

• How can we statistically resolve  $\cos\theta_{CS}$ ?

$$\cos \theta = 2 \underbrace{(l^+ \overline{l}^- - l^- \overline{l}^+) \cdot \operatorname{sign}(y_{\ell\ell})}_{m_{\ell\ell} \sqrt{m_{\ell\ell}^2 + \overrightarrow{p}_T^2}},$$

- $l^{\pm} = E \pm p_z$  for the lepton/neutrino  $\overline{l}^{\pm} = E \pm p_z$  for the antilepton/antineutrino
- $\,\circ\,$  Only choose correct  $p_z$  50% of the time, incorrect  $p_z$  can still be used

![](_page_50_Figure_6.jpeg)

#### $\circ\,$ Can solve it in 2 cases:

- 1) Solutions where  $y_{ll}^1$  and  $y_{ll}^2$  have opposite signs
  - sign flips in orange and blue cancel
- $\,\circ\,$  2) One of the solutions violates Bjorken condition x < 1
  - $\circ~$  neutrino has more  $p_z$  than beam energy  ${\boldsymbol \rightarrow}$  unphysical

![](_page_50_Figure_12.jpeg)

## $\cos\theta_{CS}$ ambiguity (2)

- Red are events where we picked right  $p_z$  to get right sign of  $\cos\theta_{CS}$
- Green are events where we picked wrong  $p_z$  but  $y_{ll}$  flipped so we get correct  $\cos\theta_{CS}$ , these are the events where we get our sensitivity.

1) Both  $\cos\theta_{CS}$  and  $y_{ll}$  have sign ambiguity so right 50%, no  $A_4$  sensitivity

2) Adding to 1): only  $y^W$  has ambiguity which cancels with  $\cos\theta_{CS} \rightarrow \text{right 100\%}$  (where we gain our sensitivity)

3] Adding to 2): One solution doesn't satisfy Bjorken condition  $(x < 1) \rightarrow$  right 100% but pretty rare

![](_page_51_Figure_7.jpeg)

## Top Background (1)

Uncertainty in A

When first adding background, the increase in uncertainty was larger than expected especially at high  $p_T^{l,v}$ .

Due to larger top background contributions.

Preliminarily we thought a  $|\Delta \phi| > \pi/4$  cut should help reduce the top background but doesn't as shown on the next slide.

![](_page_52_Figure_4.jpeg)

![](_page_52_Figure_5.jpeg)

## Top Background (2)

Both signal and background at high  $p_T$  lose all  $\cos\theta_{CS}$  shape information and causing large uncertainty.

Addition of MET cut reduces background but also signal too much.

From our studies the top background seems irreducible.

![](_page_53_Figure_4.jpeg)

## Event selection: Sensitivity Comparison

![](_page_54_Figure_1.jpeg)

![](_page_54_Figure_2.jpeg)

## Systematics

![](_page_55_Figure_1.jpeg)

- Have tested 2 largest expected systematics (Hadronic Recoil and Background) independently
- MJ NPs heavily constrained, still being understood.

## MJ Acceptance Systematic (8 < pT < 17 GeV)

![](_page_56_Figure_1.jpeg)

## MJ Shape Systematic (8 < pT < 17 GeV)

![](_page_57_Figure_1.jpeg)

### MJ templates derived for pure DD and predicted by QCD MC

![](_page_58_Figure_1.jpeg)

10.03.2023

### Debugging: MJ templates derived by accCorr

![](_page_59_Figure_1.jpeg)

![](_page_59_Figure_2.jpeg)

2

d)

3

10.03.2023

### Debugging: accCorr functions

![](_page_60_Figure_1.jpeg)

![](_page_60_Figure_2.jpeg)

## Acc Correction for 3D templates

![](_page_61_Figure_1.jpeg)

statistical uncertainties.

## Acc Correction for 3D templates

![](_page_62_Figure_1.jpeg)

Figure 166: Multi-jet background template acceptance correction functions for  $\cos \theta_{CS}$  as slices of  $\phi_{CS}$  for  $55 < p_T^{\ell,\nu} < 75$  GeV bin for  $W^- \rightarrow e^-\overline{\nu}$  channel. Distributions are normalized over  $\phi_{CS}$  slices. Error bands represents statistical uncertainties.

### Acc Correction for 3D templates

![](_page_63_Figure_1.jpeg)

 $210 < p_T^{\ell,\nu} < 600 \text{ GeV}$  bin for  $W^- \rightarrow e^-\overline{\nu}$  channel. Distributions are normalized over  $\phi_{CS}$  slices. Error bands represents statistical uncertainties.