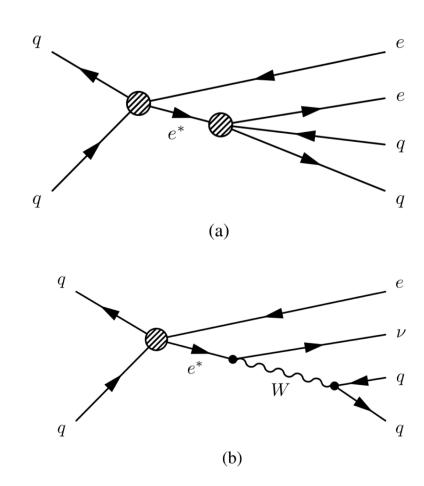


Определение фонов, связанных с процессами образования топ кварков, при поиске возбужденных лептонов в эксперименте ATLAS

СТУДЕНТ: Ван Алина, Б19-102

НАУЧНЫЙ РУКОВОДИТЕЛЬ:

Мягков Алексей Григорьевич, к.ф.-м.н.


МОТИВАЦИЯ

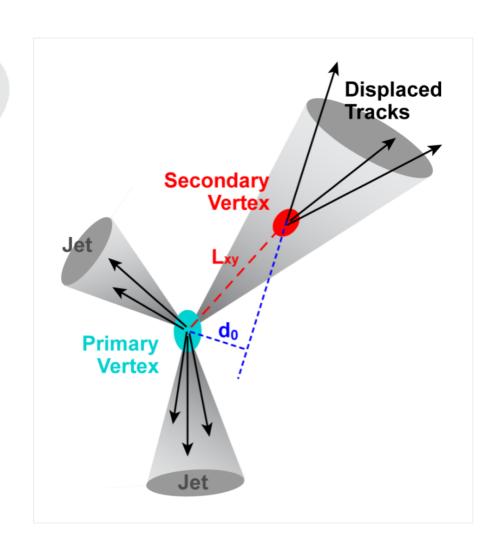
Проблемы СМ:

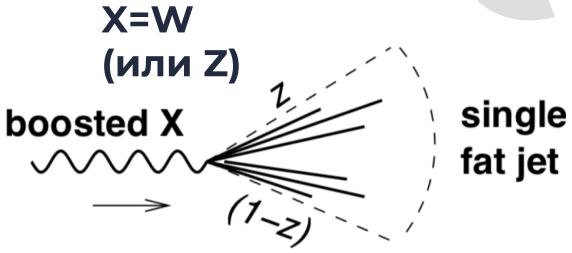
- Скрытая масса
- Проблема иерархии масс и структуры поколений
- Темная энергия и т.д.

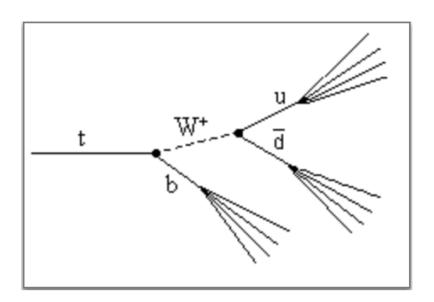
Диаграммы Фейнмана для образования возбужденного лептона с последующим распадом

- (а) через контактное взаимодействие
- (b) через калибровочный бозон

Цели и задачи

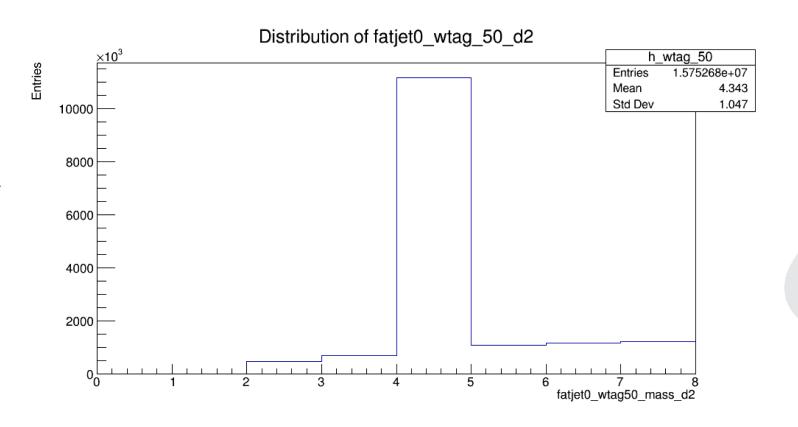

Целью данной НИР является оценка фонов, связанных с образованием топ-кварка, с помощью Монте-Карло моделированных данных при поиске возбужденных лептонов в эксперименте ATLAS и дальнейшая корректировка Монте-Карло данных с учетом реальных данных.


В соответствии с поставленной целью задачами данной работы были:


- Определение критериев отбора на b-tag струи и на толстые струи
- Определение контрольной области ttbar для конечного состояния evJ
- Построение гистограмм с распределением по инвариантной массе W,b-струй для различных фоновых процессов
- Построение гистограмм с распределением по инвариантной массе W,b-струй для реальных данных
- Отладка процедуры нормировки для фоновых процессов
- Оценка вкладов различных фоновых процессов в образовании топ кварка

b-tagging. Толстые струи

Определение критериев отбора на bтагированные струи и толстые струи


Критерии отбора на b-tag струи

$$p_{t,jet} > 30 \text{ GeV}$$
, $|\eta|_{jet} < 2.5$
R > 0.5

$$R = \sqrt{(\eta_{bjet} - \eta_{Wjet})^2 + (\phi_{bjet} - \phi_{Wjet})^2}$$

Идентификация W-струи

Маркер «W-tag50» оптимизирован для достижения эффективности сигнала 50% с подавлением фона 40–80.

Определение контрольной области для ttbar для конечного состояния evJ

Ограничения на конечное состояние evJ

$$p_{t,e} > 65 \Gamma \ni B,$$

 $|\eta|_e < 2.4$
 $E_t^{miss} > 100 \Gamma \ni B$

m_e^*	$m_T(E_t^{miss},J)$		
${ m GeV}$	${ m GeV}$		
100-500	50 - 560		
500-1000	560 -850		
>1000	>850		

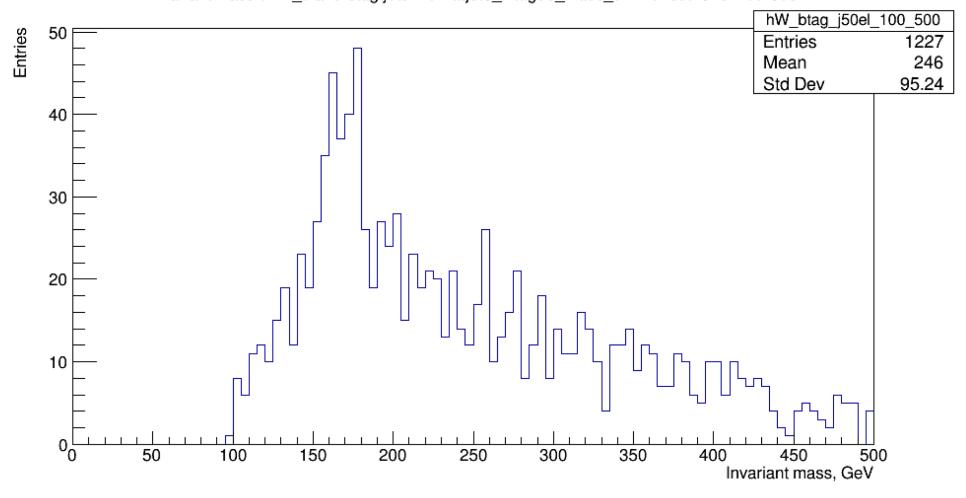
$$m_T(E_t^{miss}, J) = \sqrt{(m^W)^2 + 2 \times (\sqrt{(m^W)^2 + (p_T^W)^2} \times E_t^{miss} - p_x^W \times E_x^{miss} - p_y^W \times E_y^{miss})}.$$

Процедура нормировки и распределения по инвариантной массе толстой W-струи и b-тагированной струи

В директориях с МК моделированными данными для каждого процесса указывались значения сечения, эффективности регистрации и коэффициента $k_{\rm F}$.

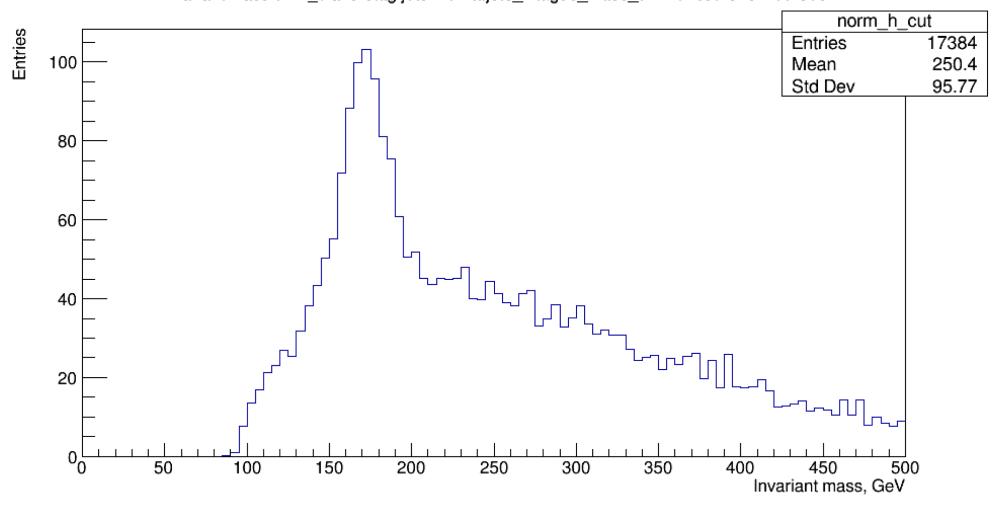
Процесс	σ	ϵ_{gen}	k_F	N_{MC}
	pb			
ttbar	729.77	0.54383	1.14	15752675
Wev	339.79	0.59667	0.9702	7975204
WpqqWmlv	24.708	1	1	3875306
WplvWmqq	24.724	1	1	3797386
Single top	2.027	1	1.0170	1040534

В директории с реальными данными для каждого датасета указывалось значение светимости. Распределения по инвариантной массе толстой и b-тагированной струй построено для 20 из 199 датасетов с реальными данными, содержащие значение светимости L=5.829 fb⁻¹.

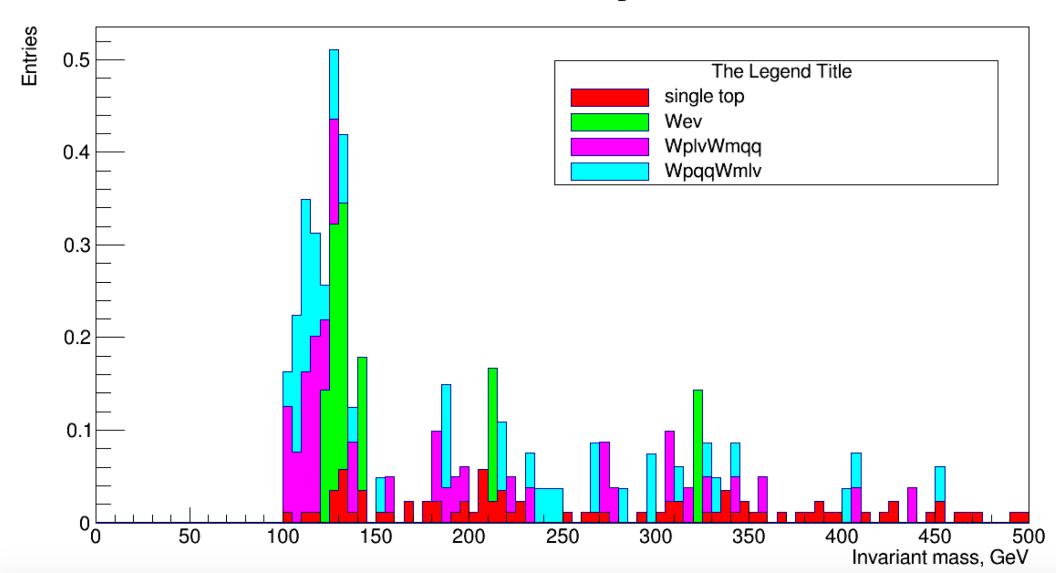

Нормировочный коэффициент

$$Scale = rac{\sigma imes L imes \epsilon_{gen} imes k_F}{N_{MC}}$$

Распределение по инвариантной массе W,bструй для реальных данных


Invariant mass of W J and btag jets with fatjet0 wtag50 mass d2 with cut for el 100-500

Распределение по инвариантной массе W,bструй для фонового процесса ttbar (МК)


Invariant mass of W J and btag jets with fatjet0 wtag50 mass d2 with cut for el 100-500

Суммарная гистограмма для фоновых процессов без ttbar

Stacked histograms

Заключение

- В рамках НИР за семестр получены гистограммы с распределением по инвариантной массе W-струи и b-струи для МК моделированных данных для оценки различных фоновых процессов в контрольной области конечного состояния evJ, связанных с образованием топ-кварка. На основании гистограмм сделан вывод, что основной вклад в данную контрольную область образования топ кварка дает процесс ttbar.
- Также необходимо отладить процедуру нормировки гистограмм с учетом дополнительной информации об эффективностях отбора на разных этапах обработки, это будет сделано в ближайшее время и рассогласование приблизительно в два раза удастся преодолеть.
- Фоновые процессы (ttbar) могут неточно моделироваться в области фазового пространства, выбранного для конкретного поиска, поэтому необходима их корректировка.