Министерство науки и высшего образования Российской федерации Федеральное Государственное автономное Образовательное учреждение высшего образования «Национальный Исследовательский Ядерный Университет «МИФИ»

УДК 539.123

ОТЧЁТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

УСТАНОВЛЕНИЕ ПРЕДЕЛОВ НА ПОТОК ЧАСТИЦ ВОЗБУЖДЁННОЙ СКРЫТОЙ МАССЫ ПРИ ПОМОЩИ ДЕТЕКТОРА БОРЕКСИНО

Научный руководитель Младший научный сотрудник

_____ Р. Р. Нугманов

Студент

К. К. Киселев

Содержание

B	ведение	3
	Скрытая масса	3
	Возбуждённая скрытая масса	3
1	Теоретический вид зависимости энергетического спектра событий от	•
	скрытой массы	4
	1.1 Кинематика реакции	4
	1.2 Расчёт спектра энергии отдачи протона	6
	1.3 Учёт разрешения детектора	7
	1.4 Учёт сцинтилляционного дефекта	7
	1.5 Исследование зависимости от параметра ΔE	10
2	Возможные фоновые процессы	11
	2.1 Распад ²¹⁰ Ро	11
	2.2 Атмосферные нейтрино	11
3	Отбор событий	13
	3.1 Первичные критерии отбора	13
	3.2 Отбор событий распада ²¹⁰ Ро	13
	3.3 Отбор по параметру Гатти	14
	3.4 Отбор событий по энергиям	15
4	Заключение	16

Введение

Скрытая масса

В астрофизике и космологии существует достаточное количество свидетельств существования материи, не участвующей в электромагнитном взаимодействии, и потому невидимой – скрытой массы [1]. К таким свидетельствам относятся:

- Кривые вращения галактик
- Анизотропия реликтового излучения
- Гравитационное линзирование

Хотя исходные предположения о свойствах скрытой массы были различными, по результатам моделирования эволюции Вселенной с учётом скрытой массы было выявлено, что преобладает холодная скрытая масса: её доля от критической плотности Вселенной составляет $\Omega_{CDM} = 26.4\%$. Такой тип скрытой массы характеризуется тем, что в момент выхода из температурного равновесия с барионным веществом, её частицы были нерелятивистскими.

Кандидаты на роль скрытой массы [1]:

- MACHO (massive astrophysical compact halo object)
- WIMP (weakly interacting massive particle)
- Аксион
- Нейтрино
- Кандидаты из теорий суперсимметрии
- Экзотические кандидаты

Основная проблема проверки гипотез, относящихся к физике частиц: наблюдение частиц скрытой массы затруднено в связи с малостью сечения их взаимодействия с барионной материей: $\sigma \sim 10^{-45}$ см² [2].

Возбуждённая скрытая масса

В связи с результатами таких экспериментов, как INTEGRAL/SPI [3] и PAMELA [4], получила распространение следующая гипотеза [5, 6] о скрытой массе: существование у её частиц возбуждённых состояний с энергией $\Delta E \sim 1$ МэВ. Это может объяснить сигнал гамма-излучения из центра Млечного Пути с энергией 511 МэВ, зарегистрированный экспериментом INTEGRAL/SPI, если предположить, что переход частицы скрытой массы из возбуждённого состояния в основное может происходить с испусканием электрон-позитронной пары. Кроме того, аномально большое число позитронов в космических лучах, полученное в эксперименте PAMELA [7], также может быть объяснено подобным процессом.

Рассматриваемая модель возбуждённой скрытой массы [8] предполагает существование частиц χ типа WIMP, масса которых $M_{\chi} = M \sim 100$ ГэВ с переносчиком взаимодействия V массой $m_V \sim 1$ ГэВ.

Вид введённого лагранжиана для частиц скрытой массы и переносчиков взаимодействия определяет процессы рассеяния на частицах стандартной модели (рисунок 1) и снятия возбуждения.

Рисунок 1 — Диаграммы процессов неупругого и упругого рассеяния частиц скрытой массы на ядрах

В рассматриваемой модели процесс первого порядка может иметь только неупругий характер, так как переносчик взаимодействия V осуществляет переход между возбуждённым χ_2 и невозбуждённым χ_1 состояниями частиц скрытой массы.

Снятие возбуждения может происходить по нескольким каналам:

- При $\Delta E > 2m_e$ основным каналом снятия возбуждения является испускание электрон-позитронной пары. Из-за электромагнитного характера этого канала время жизни возбуждённых состояний оказывается много меньше времени жизни Вселенной. Следствием этого является малость доли частиц скрытой массы в возбуждённым состоянии.
- При $\Delta E < 2m_e$ преобладает снятие возбуждения с испусканием пары нейтриноантинейтрино. Такой процесс носит слабый характер, поэтому ширина перехода частиц скрытой массы из возбуждённого состояния в основное $\Gamma_{\nu\nu} = 3 \times 10^{-48}$ ГэВ оказывается много меньше обратного времени жизни Вселенной $\tau_U^{-1} = 1.5 \times 10^{-42}$ ГэВ.

1 Теоретический вид зависимости энергетического спектра событий от скрытой массы

1.1 Кинематика реакции

Рассматриваемый процесс (рисунок 2) рассеяния является неупругим: при столкновении частицы скрытой массы с протоном мишени выделяется энергия ΔE .

Рисунок 2 — Схема процесса неупругого рассеяния частицы скрытой массы на протонах мишени и схема энергетических уровней возбуждения частиц скрытой массы, соответствующих процессу.

При рассмотрении кинематики процесса используются следующие условия:

- Дифференциальное сечение реакции получено в первом борновском приближении
- Масса переносчика взаимодействия $m_V \sim 1 \ \Gamma$ эВ
- Масса частицы скрытой массы много больше массы протона $M \gg m$
- Начальная кинетическая энергия протона в лабораторной системе отсчёта много меньше энергии перехода частицы скрытой массы между состояниями. $\frac{mv^2}{2} \ll \Delta E$

В лабораторной системе отсчёта частица скрытой массы налетает на покоящийся протон со скоростью v, в то время как в системе центра инерции (СЦИ) из-за малости массы протона можно положить, что частица скрытой массы покоится, а протон налетает на неё с той же скоростью v, поэтому вся энергия возбуждённого состояния передаётся протону: $\Delta E = \frac{k_f^2}{2m}$

Начальный и конечный импульсы в системе центра инерции:

$$|\mathbf{k}_{\mathbf{i}}| = mv \qquad |\mathbf{k}_{\mathbf{f}}| = \sqrt{2m\Delta E} \tag{1}$$

Сечение рассеяния полагаем спин-независимым [8]:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_{\mathrm{CIIM}}} = \frac{\sigma_n |\mathbf{k}_{\mathbf{f}}|}{4\pi |\mathbf{k}_{\mathbf{i}}|} \frac{1}{(1 + (\frac{\mathbf{q}}{m_V})^2)^2}$$
(2)

Здесь σ_n – эффективное сечение рассеяния частиц скрытой массы на нуклоне, $\Omega_{\rm CUM}$ – телесный угол в системе центра инерции, **q** – переданный 3-импульс.

В используемом приближении $|\mathbf{q}| \ll m_V$, поэтому знаменатель дроби можно положить равным единице. После подстановки значений импульсов (1) в формулу (2) и интегрирования по азимутальному углу получаем

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta_{\mathrm{CIIIM}}} = \frac{\sigma_n}{2} \sqrt{\frac{2\Delta E}{mv^2}} \tag{3}$$

Энергия протона E_R измеряется в лабораторной системе отсчёта, поэтому необходимо совершить преобразования Лоренца:

$$p_{\perp} = k_f \sin \theta_{\rm CIU} \tag{4}$$

$$p_{\parallel} = \gamma \left(k_f \cos \theta_{\text{СЦИ}} + v(\Delta E + m) \right) \simeq k_f \cos \theta_{\text{СЦИ}} + vm \tag{5}$$

Тогда

$$E_R = \frac{\mathbf{p}_{\perp}^2 + \mathbf{p}_{\parallel}^2}{2m} \simeq \Delta E + \sqrt{2mv^2 \Delta E} \cos \theta_{\mathrm{CIII}} \tag{6}$$

В системе центра инерции $\cos \theta_{\rm CЦИ} \in [-1;1]$ или $\cos^2 \theta_{\rm CЦИ} \leqslant 1$, откуда

$$v_{min} = \frac{|E_R - \Delta E|}{\sqrt{2m\Delta E}} \tag{7}$$

1.2 Расчёт спектра энергии отдачи протона

Зависимость скорости счёта от энергии отдачи протона даётся формулой 8 [1]:

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} = \frac{N_T F \rho_D}{M} \int_{v_{min}}^{\infty} v f(v, v_{esc}) \mathrm{d}v \frac{\mathrm{d}\sigma}{\mathrm{d}E_R}$$
(8)

где R – скорость счёта событий, N_T – число протонов на единицу массы мишени, F – доля частиц скрытой массы, находящихся в возбуждённом состоянии, ρ_D – плотность частиц скрытой массы.

Из кинематики реакции получаем

$$\frac{\mathrm{d}\sigma}{\mathrm{d}E_R} = \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta_{\mathrm{CIII}}} \frac{\mathrm{d}\cos\theta_{\mathrm{CIII}}}{\mathrm{d}E_R} = \frac{\sigma_n}{2mv^2} \tag{9}$$

Функция плотности распределения частиц скрытой массы по скоростям в системе покоя Земли в локальной области Млечного Пути имеет вид распределнения Максвелла, ограниченного скоростью $v_{esc} \simeq 550$ км/с [15]:

$$f(v, v_{esc}) = \begin{cases} \left(\frac{3 - \frac{8}{\pi}}{\pi v_c^2}\right)^{\frac{3}{2}} 4\pi v^2 e^{-\frac{\left(3 - \frac{8}{\pi}\right)v^2}{v_c^2}}, & \text{при } v < v_{esc} \\ 0, & \text{при } v > v_{esc} \end{cases}$$
(10)

Распределение Максвелла характеризуется одним параметром, который для скрытой массы принято обозначать $v_c \simeq 220$ км/с – скорость движения по круговой орбите

в гравитационном поле Млечного Пути на расстоянии, равном расстоянию от Солнца до центра галактики [16]. Этот параметр характеризует дисперсию распределения: $\sigma_v = \frac{v_c}{\sqrt{2}} \simeq 150 \text{ км/c}$, также можно получить выражение для средней скорости: $\langle v \rangle = \frac{\sigma_v}{\sqrt{3\pi/8-1}} \simeq 370 \text{ км/c}$, тогда средняя энергия частиц скрытой массы $\langle E_{kin} \rangle \simeq 60 \text{ кэВ}$.

После взятия интеграла по скорости в формуле (8) остаётся два слагаемых:

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} = \frac{N_T F \rho_D \sigma_n}{2mM} \sqrt{\frac{\left(3 - \frac{8}{\pi}\right)}{\pi v_c^2}} \left(e^{-\frac{\left(E_R - \Delta E\right)^2 \left(3 - \frac{8}{\pi}\right)}{2v_c^2 m \Delta E}} - e^{-\frac{v_{esc}^2 \left(3 - \frac{8}{\pi}\right)}{v_c^2}} \right)$$
(11)

Вторым слагаемым можно пренебречь, тогда

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} \approx \frac{N_T F \rho_D \sigma_n}{2mM} \sqrt{\frac{\left(3 - \frac{8}{\pi}\right)}{\pi v_c^2}} e^{-\frac{(E_R - \Delta E)^2 \left(3 - \frac{8}{\pi}\right)}{2v_c^2 m \Delta E}} = A e^{-\frac{(E_R - \Delta E)^2}{2\sigma_1^2}} \tag{12}$$

где введены обозначения $A = \frac{N_T F \rho_D \sigma_n}{2m M v_c} \sqrt{\frac{\left(3-\frac{8}{\pi}\right)}{\pi}}, \ \sigma_1^2 = \frac{\Delta E m v_c^2}{3-\frac{8}{\pi}}$

1.3 Учёт разрешения детектора

Для учёта разрешения детектора Борексино, нужно ввести функцию отклика детектора – вероятность передачи чувствительному объёму детектора энергии E при попадании в него частицы с энергией E'.

Для детектора Борексино функция отклика детектора имеет вид [12]:

$$G(E_{det}, E_R) = \frac{1}{\sqrt{2\pi\sigma_0}} e^{-\frac{(E_{det} - E_R)^2}{2\sigma_0^2}}$$
(13)

где $\sigma_0 = 0.06\sqrt{E_{det}}$, где энергия выражена в МэВ, то есть для частицы с энергией 1 МэВ относительное энергетическое разрешение составляет 6%.

Спектр событий с учётом разрешения детектора даётся формулой

$$\frac{\mathrm{d}R}{\mathrm{d}E_{det}} = \int_{E_{Rmin}}^{E_{Rmax}} \frac{\mathrm{d}R}{\mathrm{d}E_R} G(E_{det}, E_R) \mathrm{d}E_R = \int_{0}^{\infty} \frac{\mathrm{d}R}{\mathrm{d}E_R} G(E_{det}, E_R) \mathrm{d}E_R \tag{14}$$

Взяв интеграл, получим

$$\frac{\mathrm{d}R}{\mathrm{d}E_{det}} = A \frac{\sigma}{\sigma_0} \left(1 - \frac{1}{2} \mathrm{erf}\left(\frac{\tilde{E}}{\sqrt{2}\sigma}\right) \right) \ e^{-\frac{(E_{det} - \Delta E)^2}{2(\sigma_1^2 + \sigma_0^2)}} \tag{15}$$

где введены обозначения $\sigma^2 = \frac{\sigma_1^2 \sigma_0^2}{\sigma_1^2 + \sigma_0^2}, \ \widetilde{E} = \frac{E_{det} \sigma_1^2 + \Delta E \sigma_0^2}{\sigma_1^2 + \sigma_0^2}.$

1.4 Учёт сцинтилляционного дефекта

Сцинтилляционный дефект (или квенчинг) – эффект, возникающий в сцинттилляторах при регистрации заряженных частиц, сильно ионизирующих среду (протоны, альфа частицы), уменьшающий световыход сцинтилляционной вспышки. Следствием сцинтиляционного дефекта является нелинейная зависимость энергии световой вспышки в сцинтилляторе от энергии, потерянной заряженной частицей.

Для моделирования сцинтилляционного дефекта в Борексино необходимы следующие параметры:

- Коэффициент Биркса для детектора Борексино $k_B = 0.0120 \frac{\text{см}}{\text{МэВ}}$ [17]
- Химический состав сцинтиллятора [12]: псевдокумол (PC) $C_6H_3(CH_3)_3$ с примесью 2,5-дифенилоксазола (PPO) $C_{15}H_{11}NO$ в количестве 1.5 г/л
- Плотности используемых химических соединений: $\rho_{PC} = 0.8761 \frac{\Gamma}{\text{см}^3}, \ \rho_{PPO} = 1.094 \frac{\Gamma}{\text{см}^3}$
- Средние потенциалы ионизации атомов водорода и углерода $\bar{I}_H = 13.5$ эВ, $\bar{I}_C = 64.5$ эВ [18]

Зависимость световыхода на единицу длины от удельных потерь энергии заряженной частицы даётся формулой [19]:

$$\frac{\mathrm{d}L}{\mathrm{d}x} = \frac{\frac{\mathrm{d}E}{\mathrm{d}x}}{1 + k_B \frac{\mathrm{d}E}{\mathrm{d}x}} \tag{16}$$

Где $\frac{dE}{dx}$ – удельные энергетические потери заряженной частицы в веществе, для нерелятивистских протонов определяемые по формуле Бете-Блоха [20, 21]:

$$\frac{\mathrm{d}E}{\mathrm{d}x} = -\frac{4\pi e^4 Z^2}{m_e v^2} \sum_A n_A Z_A \ln\left(\frac{2m_e v^2}{\bar{I}_A}\right) \tag{17}$$

Где Z = 1 – заряд протона, n_A – концентрация атомов элемента A, Z_A – порядковый номер элемента A, \bar{I}_A – средний потенциал ионизации элемента A, сумма берётся по всем элементам в веществе в котором заряженная частица теряет энергию.

Так как в детекторе Борексино используется органический сцинтиллятор, слагаемые, вносящие наибольший вклад в формулу 17, соответствуют водороду (наименьший потенциал ионизации) и углероду (наибольшая концентрация и большой заряд ядра).

Из формулы 16 следует формула для полной энергии световой вспышки при данной кинетической энергии протона:

$$E_{vis} = \int_{0}^{E_{det}} \frac{\mathrm{d}E}{1 + k_B \frac{\mathrm{d}E}{\mathrm{d}x}} \tag{18}$$

Численное вычисление интеграла для исследуемых кинетических энергий протона $E_{det} = 0.5 \div 1.5$ МэВ даёт зависимость квенчинг-фактора Q от энергии, потерянной протоном в детекторе, изображённую на рисунке 3. Для удобства дальнейшего использования, зависимость была фитирована формулой вида:

$$Q = \frac{E_{vis}}{E_{det}} = \frac{E_{det}}{a + bE_{det}} \tag{19}$$

Рисунок 3 — Зависимость квенчинг-фактора Q от энергии, потерянной протоном в детекторе

Значение параметров фита: a = 2.696 МэВ, b = 2.653.

Для учёта сцинтилляционного дефекта спектр необходимо преобразовать следующим образом:

$$\frac{\mathrm{d}R}{\mathrm{d}E_{vis}}(E_{vis}) = \frac{\mathrm{d}R}{\mathrm{d}E_{det}}(E_{det}(E_{vis})) \times \frac{\partial E_{det}}{\partial E_{vis}}(E_{vis})$$
(20)

Из формулы 19 можно получить

$$E_{det}(E_{vis}) = \frac{1}{2} \left(bE_{vis} + \sqrt{b^2 E_{vis}^2 + 4aE_{vis}} \right)$$
(21)

$$\frac{\partial E_{det}}{\partial E_{vis}}(E_{vis}) = \frac{b}{2} + \frac{b^2 E_{vis} + 2a}{2\sqrt{b^2 E_{vis}^2 + 4aE_{vis}}}$$
(22)

Чтобы сравнить получающиеся зависимости, построим их на одном графике. Как видно из рисунка 4, спектр с учётом разрешения детектора, как ожидалось, имеет меньшее максимальное значение, а также большую дисперсию, чем спектр по энергии отдачи.

Интерес представляет регистрируемый на детекторе спектр $\frac{dR}{dE_{vis}}$. Влияние сцинтилляционного дефекта проявилось в двух параметрах расчитанного распределния: среднее значение распределния уменьшается, и всё распределение сдвигается в область более низких энергий, но кроме того, из-за медленности изменения квенчинг-фактора в областях энергий, где лежит спектр, происходит уменьшение его ширины.

Нижняя энергетическая граница детектируемых событий для Борексино: 0.2 МэВ, поэтому не весь спектр протонов отдачи попадает в область исследуемых детектором энергий. Интегрирование спектра показывает, что в область энергий > 0.2 МэВ попадает примерно 14% событий.

При используемых значениях параметров модели возбуждённой скрытой массы полная ожидаемая скорость счёта:

Рисунок 4 — Теоретические спектры событий от скрытой массы по энергиям отдачи протона (синий), энергии отдачи протона с учётом разрешения детектора (красный) и энергии регистрируемой детектором с учётом эффекта квенчинга (чёрный)

1.5 Исследование зависимости от параметра ΔE

Расчитанный энергетический спектр имеет сложную, в отличие от других параметров модели, зависимость от энергии ΔE , высвобождаемой частицей скрытой массы при снятии возбуждения. Эта зависимость в большей степени следует из сцинтилляционного дефекта и имеет вид, представленный на рисунке 5.

При $\Delta E > 2m_e$ для учёта электромагнитной моды распада с малым временем жизни, существенно влияющей на долю частиц скрытой массы в возбуждённом состоянии, был введён множитель вида

$$\frac{\eta(2m_e - \Delta E) + F_e}{1 + F_e \eta(2m_e - \Delta E)}$$

где $\eta(x)$ – функция Хевисайда, F_e – доля частиц скрытой массы в возбуждённом состоянии при разрешённой электромагнитной моде снятия возбуждения (положена равной 0.1).

Также на рисунке 5 отмечена минимальная энергия, которую воспринимает детектор Борексино $E_{min} = 0.2$ МэВ.

Рисунок 5 — Завимость вида энергетического спектра от энергии возбуждённого состояния ΔE

2 Возможные фоновые процессы

2.1 Распад ²¹⁰Ро

Одно из наиболее заметных фоновых событий описано в [12]. Цепочка 24 распада ²¹⁰Pb является источником нестабильного по времени фона α-частиц, имеющих параметры формы импульса, похожие на параметры формы импульса протонов. Источником тяжёлых радиоактивных изотопов являются материалы детектора, поэтому событий, связанных с их распадами больше всего около границ объёма детектора и в нижней его части.

²¹⁰Pb
$$\xrightarrow{\beta}$$
 ²¹⁰Bi $\xrightarrow{\beta}$ ²¹⁰Po $\xrightarrow{\alpha}$ ²⁰⁶Pb (24)

Из-за отстутсвия у детектора Борексино детализированной температурной карты, теплоизоляции и активного контроля температуры в сцинтилляторе возникали конвективные потоки, которые распространяли тяжёлые радиоактивные изотопы по всему объёму сцинтиллятора.

Для устранения фона от цепочки распада ²¹⁰Pb в 2015-2016 годах была установлена система теплоизоляции и активного контроля температуры [22], позволившая установить постоянный градиент температур и прекратить распространение тяжёлых радиоактивных изотопов в объёме сцинтиллятора.

2.2 Атмосферные нейтрино

Из кинематики упругого рассеяния нейтрино на протонах можно получить связь между энергией налетающего нейтрино и максимальной конечной кинетической энергией протона, что соответствует рассеянию нейтрино назад.

$$E_R^{max} = \frac{2E_{\nu}^2}{m_p + 2E_{\nu}} \simeq \frac{2E_{\nu}^2}{m_p}$$
(25)

Из этой формулы можно выразить энергию нейтрино, получив таким образом минимальную энергию налетающего нейтрино, необходимую для образования протона с данной кинетической энергией.

$$E_{\nu}^{min} = \frac{E_R + \sqrt{E_R(E_R + 2m_p)}}{2} \simeq \sqrt{\frac{E_R m_p}{2}}$$
(26)

Для исследуемых кинетических энергий протонов $E_R \in (0.5; 1.5)$ МэВ минимальные энергии нейтрино имеют значения $E_{\nu}^{min} \sim 15$ МэВ.

В отличие от солнечных нейтрино, для которых существует верхняя граница по энергиям ~ 10 МэВ [23], атмосферные нейтрино, порождаемые распадами космических лучей в атмосфере, имеют энергетический спектр, неограниченный сверху. Расчёт энергетического спектра атмосферных нейтрино для малых энергий был выполнен в [24], энергетические спектры изображены на рисунке 6.

Рисунок 6 — Энергетические спектры атмосферных нейтрино

Для оценки скорости счёта событий от рассеяния атмосферных нейтрино на протонах сцинтиллятора, необходима формула дифференциального сечения упругого рассеяния нейтрино на протонах [25], которая для передаваемых 4-импульсов меньших массы Z-бозона упрощается:

$$\frac{\mathrm{d}\sigma_{\nu p}}{\mathrm{d}E_R} = \frac{G_F^2 m_p}{2\pi E_\nu^2} ((c_V + c_A)^2 E_\nu^2 + (c_V - c_A)^2 (E_\nu - E_R)^2 - (c_V^2 - c_A^2) m_p E_R)$$
(27)

Тогда энергетический спектр событий от упругого рассеяния атмосферных нейтрино на протонах даётся формулой

$$\frac{\mathrm{d}R}{\mathrm{d}E_R}(E_R) = N_p \int_{E_\nu^{min}(E_R)}^{+\infty} \frac{\mathrm{d}j}{\mathrm{d}E_\nu}(E_\nu) \frac{\mathrm{d}\sigma_{\nu p}}{\mathrm{d}E_R}(E_R, E_\nu) \mathrm{d}E_\nu$$
(28)

Где $\mathbf{N}_p = 6 \times 10^{30}$ – число протонов на 100 тонн сцинтиллятора.

Численное интегрирование спектра в пределах $E_R \in (0.20; 0.23)$ МэВ даёт скорость счёта $R_{\nu} = 0.3 \times 10^{-3}$ событий в год.

3 Отбор событий

3.1 Первичные критерии отбора

Критерии отбора событий-кандидатов:

- Мюонное вето
- Событие-кандидат не должно быть шумом электроники
- Тип триггера 1
- Событие-кандидат должно иметь один кластер
- Энергия события меньше 1 МэВ
- Пространственные координаты события (в метрах) $Z \in (-1.8; 2.2), \sqrt{X^2 + Y^2 + Z^2} \le 2.8$

Ограничение пространственных координат влечёт за собой уменьшение объёма сцинтиллятора, задействованного в регистрации событий, со 100 т до 71.3 т (расчёты спектров отдачи протона от частиц скрытой массы и от атмосферных нейтрино выполнены с учётом ограничения массы сцинтиллятора).

3.2 Отбор событий распада ²¹⁰Ро

Чтобы отбросить возможные события α -частиц от распада изотопа ²¹⁰Ро, был произведён анализ данных двух временных отрезков: 2009-2019 гг. и 2016-2019 гг. (время набора данных: 755.7 дней). Для подтверждения правильного отбора событий были построены гистограммы распределений событий по параметру Гатти для двух временных промежутков. Из рисунка 7 видно, что события с положительным средним параметром Гатти были отброшены, однако данный отбор существенно уменьшил статистику.

Рисунок 7 — Распределения событий по параметру Гатти для набора данных за 2009-2019 гг. (слева) и за 2016-2019 гг. (справа)

3.3 Отбор по параметру Гатти

Параметр Гатти – параметр формы импульса электрического сигнала, возникающего в детекторе при прохождении через него элементарной частицы [26].

По известным формам импульса от интересующих частиц, определяются нормированные числа фотонов α_i, β_i , регистрируемые детектором в i-том промежутке времени (бине) электрического сигнала. Затем вычисляются значения весов

$$P_i = \frac{\alpha_i - \beta_i}{\alpha_i + \beta_i} \tag{29}$$

По значениям весов и нормированным числам s_i фотонов в i-том промежутке времени для исследуемого импульса вычисляется значение параметра Гатти

$$G = \sum_{i} P_i s_i \tag{30}$$

Так как знак весов определяется типом частицы, то значение параметра Гатти тоже будет зависеть от типа частицы. Для α -частиц среднее значение параметра Гатти больше 0, для импульсов от электронов среднее значение меньше 0. Таким образом, параметр Гатти можно использовать для отделения событий-кандидатов от фона.

Протон, как и α-частицы, является тяжёлой заряжнной частицей, поэтому среднее значение параметра Гатти для протонов тоже > 0.

Для отбрасывания электронных событий был произведён отбор по параметру Гатти: были отобраны события с парметром Гатти больше определённого значения G₀.

Для оценки количества остаточных событий с отрицательным параметром Гатти их пик был фитирован распределением Гаусса, и была расчитана доля отобранных событий с отрицательным параметром Гатти.

Параметр	Доля отброшенных событий	Число отобранных
отбора G_0	с параметром Гатти < 0, $\%$	событий
0	98.58	712
0.01	99.86	489
0.02	99.99	354
0.03	99.99978	215

Таблица 1 — Зависимость числа отброшенных событий и числа отобранных событий от значения параметра отбора

В дальнейшем для отбора было выбрано значение параметра $G_0 = 0.01$.

3.4 Отбор событий по энергиям

Рисунок 8 — Энергетическое распределение отобранных событий

Энергия искомых событий лежит около 0.2 МэВ, но из-за существующего для Боресино ограничения возможно отобрать только события с энергией больше данной. Исходя из этого и из вида рассчитанного распределения, для отбора был выбран интервал энергий $E_{vis} \in (0.20; 0.23)$ МэВ. Среди изображённых на рисунке 8 событий, близких по энергиям к искомым, только 1 событие-кандидат удовлетворяет всем условиям отбора.

4 Заключение

- Был произведён расчёт теоретического спектра событий от взаимодействия частиц возбуждённой скрытой массы с протонами мишени
- Рассчитана ожидаемая скорость счёта событий от взаимодействия частиц возбуждённой скрытой массы с протонами мишени: R = 5.35 год⁻¹.
- Произведена оценка фонового вклада:
 - события от распада ²¹⁰Ро были отброшены за счёт уменьшения конвективных потоков тяжёлых радиоактивных изотопов;
 - была расчитана скорость счёта фоновых событий от упругого рассеяния атмосферных нейтрино на протоне, которая оказалась равной $R_{\nu} = 0.3 \times 10^{-3}$ год⁻¹.
- Произведён отбор событий-кандидатов рассеяния частиц возбуждённой скрытой массы на протонах мишени. В период набора данных 2016-2019 гг. (755.7 дней) было отобрано одно событие. Экспериментальная скорость счёта таких событий оказалась равной $R_{_{\rm эксп}} = 0.483 \text{ год}^{-1}$.

Список литературы

- Review of Particle Physics Particle Data Group Progress of Theoretical and Experimental Physics, Volume 2022, Issue 8, August 2022, 083C01
- [2] E. Aprile, et al., The XENON100 dark matter experiment, Astroparticle Physics, Volume 35, Issue 9, 2012
- [3] The INTEGRAL mission, C. Winkler, et al., A&A, 411 1 (2003) L1-L6
- [4] V. Bonvicini, et al. The PAMELA experiment in space, Nuclear Instruments and Methods in Physics Research, Volume 461, Issues 1–3, 2001
- [5] Exciting dark matter and the INTEGRAL/SPI 511 keV signal, Douglas P. Finkbeiner and Neal Weiner, Phys. Rev. D 76, 083519 – Published 22 October 2007
- [6] Spencer Chang, Graham D. Kribs, David Tucker-Smith, and Neal Weiner, Inelastic dark matter in light of DAMA/LIBRA, Phys. Rev. D 79, 043513 – Published 12 February 2009
- [7] Adriani, O., Barbarino, G., Bazilevskaya, G. et al. An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV. Nature 458, 607–609 (2009).
- [8] Brian Batell, Maxim Pospelov, and Adam Ritz, Direct detection of multicomponent secluded WIMPs, Phys. Rev. D 79, 115019, 2009
- [9] G. Alimonti, et al., The Borexino detector at the Laboratori Nazionali del Gran Sasso, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 600, Issue 3, 2009, Pages 568-593, ISSN 0168-9002
- [10] Gioacchino Ranucci, et al., Borexino, Nuclear Physics B Proceedings Supplements, Volume 91, Issues 1–3, 2001
- [11] M. Agostini, et al., Search for low-energy neutrinos from astrophysical sources with Borexino, Astroparticle Physics, Volume 125, 2021
- [12] The Borexino Collaboration. Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun. Nature 587, 577–582 (2020).
- [13] Alvaro E. Chavarria, Sensitivity of Borexino to Excited Dark Matter (XDM)
- [14] J. Buch, S. C. J. Leung and J. Fan, Using Gaia DR2 to constrain local dark matter density and thin dark disk, JCAP 1904, 026 (2019)
- [15] T. Piffl et al., The RAVE survey: the Galactic escape speed and the mass of the Milky Way, Astron. Astrophys. 562, A91 (2014)
- [16] J. Bovy et al., The Milky Way's Circular-velocity Curve between 4 and 14 kpc from APOGEE data, Astrophys. J. 759, 131 (2012)
- [17] V. S. Atroshchenko and E. A. Litvinovich, 2016 J. Phys.: Conf. Ser. 675 012014

- [18] Wolfgang Lotz, Ionization Potentials of Atoms and Ions from Hydrogen to Zinc*, J. Opt. Soc. Am. 57, 873-878 (1967)
- [19] J B Birks 1951 Proc. Phys. Soc. A 64 874
- [20] Bethe H., On the theory of the passage of rapid charged particle radiation through matter, Annalen der Physik., 1930., T. 5., №. 3., C. 325-400.
- [21] Bloch, F., Bremsvermögen von Atomen mit mehreren Elektronen., Z. Physik 81, 363–376 (1933).
- [22] D. Bravo-Berguño et al., The Borexino Thermal Monitoring and Management System and simulations of the fluid-dynamics of the Borexino detector under asymmetrical, changing boundary conditions, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 885, 2018, Pages 38-53, ISSN 0168-9002
- [23] John N. Bahcall, Neutrino Astrophysics, Cambridge University Press, 1993
- [24] G. Battistoni, A. Ferrari, T. Montaruli, P.R. Sala, The atmospheric neutrino flux below 100MeV: The FLUKA results, Astroparticle Physics, Volume 23, Issue 5, 2005, Pages 526-534, ISSN 0927-6505
- [25] Effects of a Neutral Intermediate Boson in Semileptonic Processes, Steven Weinberg, Phys. Rev. D 5, 1412 – Published 15 March 1972
- [26] E. Gatti and F. De Martini, A new linear method of discrimination between elementary particles in scintillation counters, Nuclear Electronics 2, 265 (1962).