

Научный руководитель: Дубинин Ф. А. Студентка 1 курса: Журкина А. О. ИЯФиТ

GAGG и матрицы SiPM

Научная исследовательская работа студента на тему:

Кафедра физики элементарных частиц №40

Национальный исследовательский ядерный университет

«МИФИ»

Введение

Позитронно-эмиссионная томография эффективный и современный метод диагностики онкологических заболеваний.

В современных ПЭТ-сканерах для регистрации аннигиляционных гаммаквантов от радиофармпрепарата, вводимого пациенту, используются тысячи сцинтилляционных элементов, от размера которых зависит пространственное разрешение и, в конечном итоге, четкость изображения изучаемого органа.

Альтернативой большому количеству элементов ПЭТ является использование кристаллических пластин (monolithic detectors) с матрицами кремниевых фотоумножителей в качестве фотодетекторов.

Рисунок 1 – Принципиальная схема ПЭТ

Цель

Поставленные задачи

 Оценка координатного разрешения детектора на основе кристалла GAGG 12x10x8 мм в сочетании с матрией SiPM 4x4 SensL's SPMArray4

- Измерение пробоя матрицы
- Написание программы для восстановления координаты XY – взаимодействия
- Изготовление маски для точного позиционирования калибровочного сцинтилляционного кристалла

Экспериментальная установка

Рисунок 2 – Матрица SiPM SensL's SPMArray4 и монолитный сцинтилляционный кристалл GAGG(Ce)

Монолитный кристалл GAGG 12x10x8 мм:

Parameter	GAGG
Z_{eff}	51
Density, g/cm^3	6.6
Luminescence decay time, ns	30-100
Energy resolution (662 keV), $\%$	5
Peak wavelength, nm	520

Матрица SiPM SensL's SPMArray 4:

Parameter	Value
Array details, pixels	4 x 4
Total pixel effective area, mm^2	$13.4 \ge 13.4$
Pixel chip area, mm^2	3.16 x 3.16

2,3 B

Рисунок 3 – Вольт-амперная характеристика

U, B

5

Экспериментальная установка

Экспериментальная установка состоит из следующих элементов:

- 1. Источник питания
- 2. Матрица SiPM 4x4 (SensL's SPMArray4)
- 3. Считывающая плата на 16 каналов
- 4. Монолитный сцинтилляционный кристалл GAGG(Ce)
- 5. Дискриминатор
- 6. Инвертор
- 7. Линия задержки
- 8. Усилитель сигнала
- 9. Аналого-цифровой преобразователь
- 10. Зарядово-цифровой преобразователь

Схема установки

Представление результатов

Рисунок 5 - Амлитудный спектр Цезия-137 снятый с 3-го канала матрицы

Рисунок 6 - Зарядовый спектр Цезия-137 снятый с 6-го канала матрицы

Представление результатов

где x_i - координата центра i-ой ячейки матрицы в милиметрах,

 ω_i - вес *i*-ой ячейки в каналах

Оценка координатного разрешения по длинной стороне матрицы: FWHM = 0,8 ± 0,1 мм

XY Distribution

Представление результатов -

- Для проверки корректности работы написанной программы была проведена симуляция данных для 16 каналов матрицы. За основу взято оценочное число фотонов (12000 шт), распределенное по двумерному Гауссу
- Для пересчета числа фотонов в номер канала был выбран оценочный коэффициент k = 4
- Причины несогласованности результатов программы и результатов симуляции сейчас являются объектом обсуждения

JN/dx

Представление результатов

Смоделирована и изготовлена маска для точного позиционирования калибровочного сцинтилляционного кристалла.

В связи с асимметрией размеров матрицы по осям X и Y было принято решение изготавливать две отдельные составляющие: крышку и помещаемую в нее маску.

Рисунок 9 - Установленная на матрицу маска для точного позиционирования калибровочного сцинтилляционного кристалла

Заключение

- Измерено напряжение пробоя матрицы: U_{пр} = 26,3 В
- Тогда рабочее перенапряжение: 2, 3 В
- Написана программа для восстановления координаты ХҮвзаимодействия
- Проведена оценка координатного разрешения по длинной стороне матрицы: FWHM = 0,8 ± 0,1 мм
- Проведена симуляция данных для сравнения с результатами программы
- Изготовлена маска для точного позиционирования калибровочного сцинтилляционного кристалла

Спасибо за внимание!

Рисунок 10 – Крейт NIM с установленными необходимыми для работы модулями

Рисунок 11 – Положение сигнала с одиночного канала(голубой) относительно сигнала с суммарного канала(желтый)

Рисунок 12 - Крейт VME с установленными модулями ADC(АЦП) и QDC(ЗЦП)

Backup

Parameter	GAGG	LYSO	$LaBr_3(Ce)$
Z_{eff}	51	63	45
Density, g/cm^3	6.6	7.1	5.1
Luminescence decay time, ns	30-100	41	16
Energy resolution (662 keV), $\%$	5	7	3
Peak wavelength, nm	520	420	365
Hygroscopicity	-	-	+
Self-radioactivity	-	+	+

Сравнение основных характеристик различных сцинтилляционных кристаллов