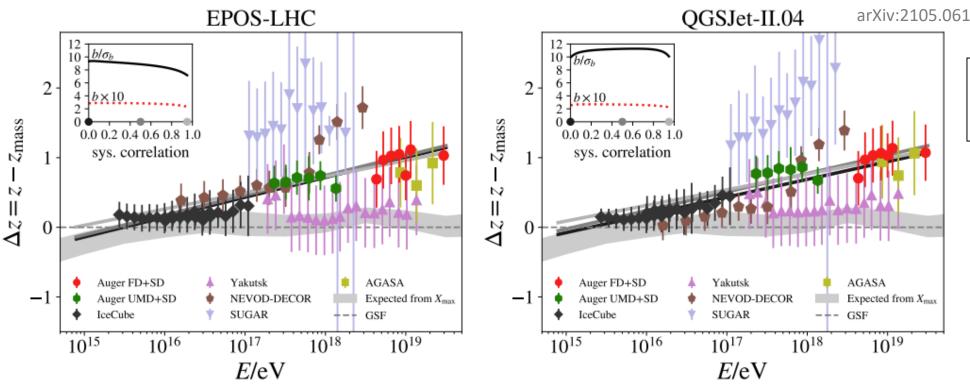

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский ядерный университет «МИФИ»

Институт ядерной физики и технологий Кафедра №40 «Физика элементарных частиц» Научно-образовательный центр НЕВОД

Исследование механизмов адронизации в моделях адронных взаимодействий, применяемых для моделирования широких атмосферных ливней

Научный руководитель:


проф., д.ф.-м.н.

Петрухин А. А.

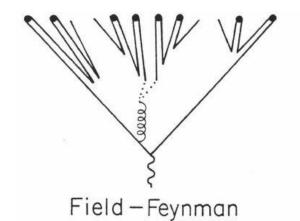
Студент:

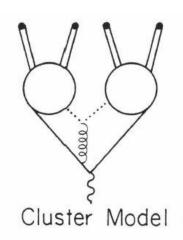
Николаенко Р. В.

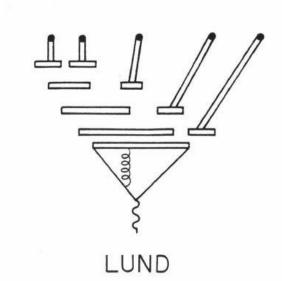
Введение. Мюонная загадка

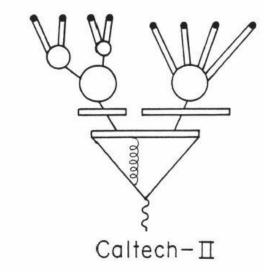
$$z = \frac{ln\langle N_{\mu}^{det}\rangle - ln\langle N_{\mu,p}^{sim}\rangle}{ln\langle N_{\mu,Fe}^{sim}\rangle - ln\langle N_{\mu,p}^{sim}\rangle}$$

• Значение z строго ограничено 0 для чисто протонного состава КЛ и 1 для чисто железного.


Численно, избыток мюонов составляет ~ 30% - 60%, что сильно превышает пределы изменения ожидаемого числа мюонов при переходе от протонного состава к железному.


Какой механизм несет ответственность за наблюдаемый избыток мюонов?


Цель работы

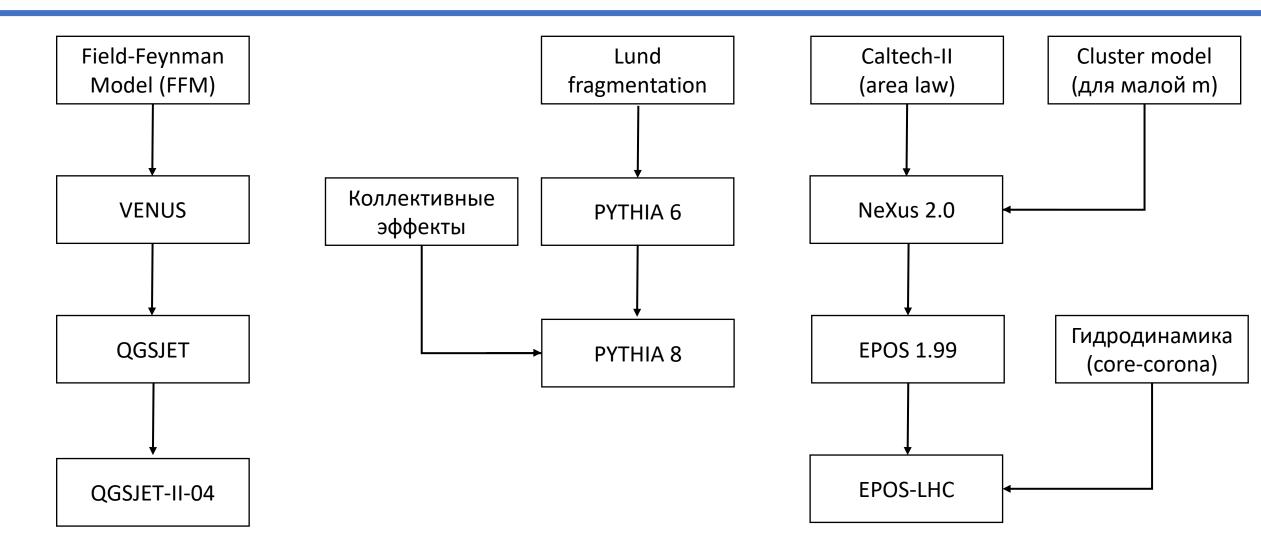

- Систематизация информации о механизмах адронизации, заложенных в моделях адронных взаимодействий.
- Необходимо классифицировать модели, установить ограничения, накладываемые используемыми механизмами адронизации и определить возможные варианты доработки этих механизмов.
- Исследуется возможность введения новых механизмов, обеспечивающие коррекцию сечений рождения некоторых частиц, оказывающих основное влияние на образование мюонов в ШАЛ.

Модели адронизации

Модель Филда-Фейнмана: функции фрагментации партонов

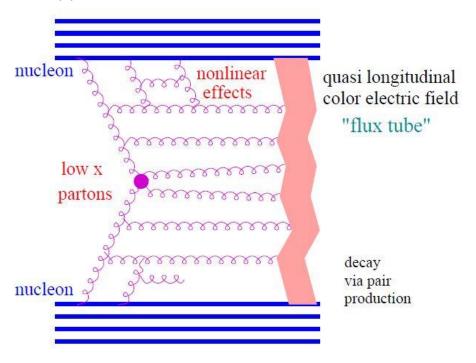
$$f_q^m(x) = (1-x), \quad f_q^b(x) = x^\alpha (a-x)^3$$

 $f_{qq}^m(x) = (1-x)^3, \quad f_{qq}^b(x) = x^\alpha (a-x)$

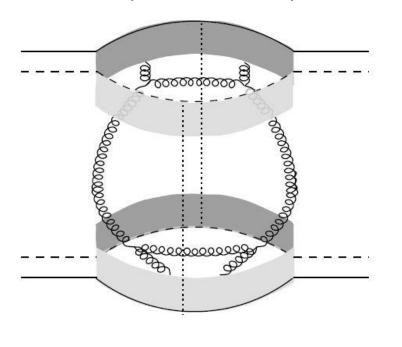

Кластерная модель: распады вида Кластер -> Адрон + Адрон

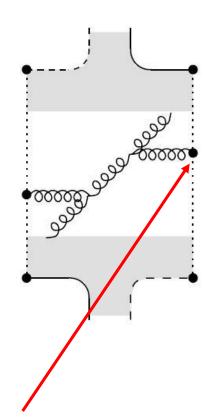
Струнная модель Лунда: функции фрагментации струн

$$f(z) \propto \frac{(1-z)^a}{z} e^{-\frac{bm^2}{z}}$$


Закон площади (Caltech-II): обобщение закона радиоактивного распада, движение струны задается действием Намбу-Гото

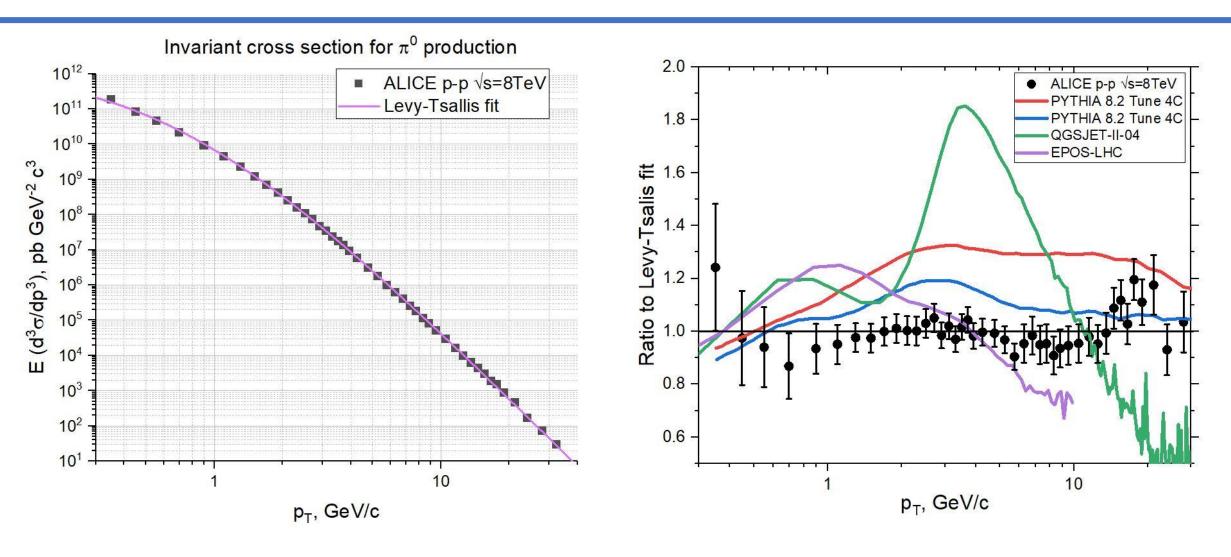
Модели адронизации



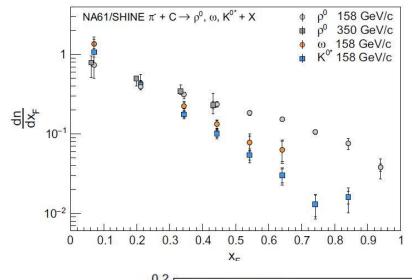

Учет глюонов

В модели EPOS:

Разрезанный померон

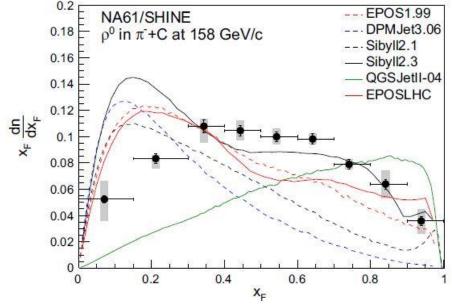


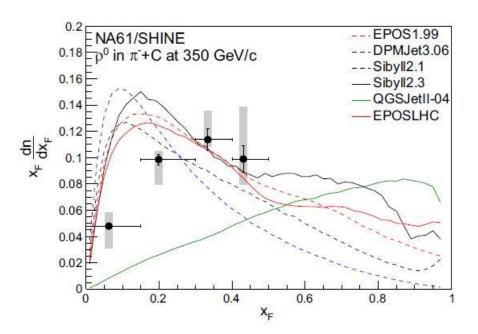
В РҮТНІА: схожее рассмотрение струн с глюонными кинками


В QGSJET-II-04 - отсутствует

Глюонный кинк на струне

Избыток мюонов: что искать в эксперименте




Избыток мюонов: что искать в эксперименте

Подавление лидирующих π^0 ? -> ρ^0 ??

А что вообще представляет собой механизм рождения резонансов в моделях адронизации?

Учет спин-орбитальных характеристик струн

Лагранжиан и действие Намбу-Гото:

$$\mathcal{L} = -\kappa \sqrt{(x'\dot{x})^2 - x'^2\dot{x}^2}$$

$$S = \int_0^\pi d\sigma \int_{\tau_0}^{\tau_1} d\tau \mathcal{L}$$

Принцип наименьшего действия + $(\dot{x} \pm x')^2 = 0$

$$x_{\mu}(\tau,\sigma) = \frac{i}{\sqrt{\pi\kappa}} \sum_{n \neq 0} e^{-in\tau} \frac{\alpha_{n\mu}}{n} \cos n\sigma + Q_{\mu} + P_{\mu} \frac{\tau}{\pi\kappa}$$

$$\alpha_{n\mu} = 2\sqrt{\frac{\kappa}{\pi}} \int_0^{\pi} \cos n\sigma \left[\dot{x}_{\mu}(0,\sigma) - inx_{\mu}(0,\sigma) \right] d\sigma, \quad \alpha_{-n\mu} = \alpha_{n\mu}^*, \quad n > 0.$$

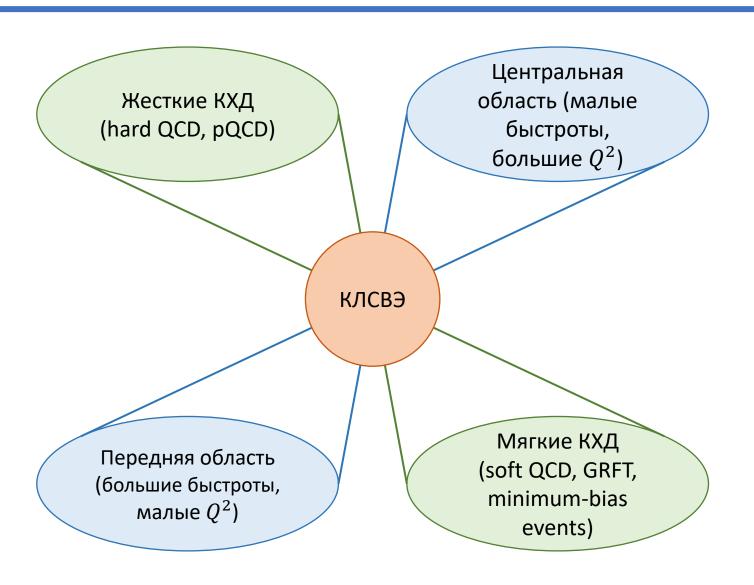
Можно получить полный угловой момент струны:

$$M_{\mu\nu} = Q_{\mu}P_{\nu} - Q_{\nu}P_{\mu} - \frac{i}{2} \sum_{n \neq 0} \frac{1}{n} \left(\alpha_{-n\mu} \alpha_{n\nu} - \alpha_{-n\nu} \alpha_{n\mu} \right)$$

Классическое выражение для спина струны:

$$J^{2} = \frac{1}{2} \left[S_{\mu\nu} S^{\mu\nu} - \frac{2}{M^{2}} P_{\nu} S^{\nu\rho} P^{\sigma} S_{\sigma\rho} \right]$$

Можно показать, что
$$J \leq \frac{1}{2\pi\kappa} M^2$$

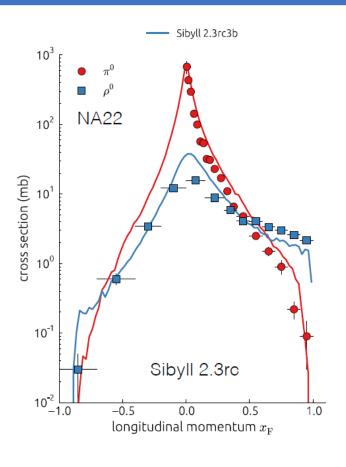

Заключение

- Проведено исследование моделей адронизации. Некоторые из механизмов, используемые даже в самых современных моделях, значительно устарели. Для полноты модели адронизации необходимо непротиворечивое описание глюонов, в том числе и мягких.
- Изучены схемы адронизации в современных моделях, применяемых для моделирования ШАЛ и событий в ускорительных экспериментах.
- Анализ экспериментальных измерений сечений рождения и множественностей мезонов показывает, что модели обладают общей тенденцией к переоценке выхода нейтральных пионов.
- Возможным объяснением данному эффекту является необходимость учета спиновых характеристик струн наряду с выполнением закона сохранения энергии-импульса

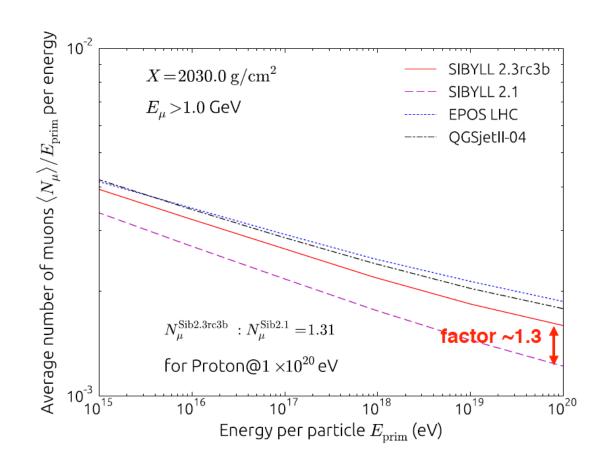
Спасибо за внимание!

BACKUP

Мюонная загадка с точки зрения адронных моделей



- Требуется одновременно описание мягких (soft) и жёстких (hard) КХД-процессов, так как с ростом энергии сечение последних растёт, а в следствие огромных γ-факторов частицы центральной области в ЛСО имеют большие продольные импульсы.
- Передняя область взаимодействия на таких энергиях плохо описывается моделями изза трудностей настройки параметров по ускорительным данным; невозможность применения пертурбативной теории КХД (perturbative, pQCD) дополнительно усложняет теоретическое описание взаимодействий (-> Gribov-Regge Field Theory, GRFT).
- Большая проблема параметризация.


Краткий обзор моделей адронных взаимодействий

	DPMJET-III.19-1	EPOS-LHC	QGSJET-II-04	SIBYLL-2.3d	PYTHIA8
Применение	ШАЛ, ФВЭ	ШАЛ, СТИ	ШАЛ	ШАЛ	ФВЭ
Теоретические основы	GRFT + minijet	GRFT + energy sharing	GRFT + resummation	GRFT + minijet	Партонная модель
Ядерные взаим.	Глаубер	GRFT	GRFT	Суперпозиция	Глаубер
Померон	soft + hard	semi-hard	semi-hard	soft + hard	soft + hard
Энерг. зав. упругости	Постоянная	Падающая	Падающая	Постоянная	_
Фрагментация струн (данные для фита)	Модель Лунда (e ⁺ e ⁻)	Закон площади (e ⁺ e ⁻)	Field-Feynman Model (p-p)	Модель Лунда (p-p)	Модель Лунда (e ⁺ e ⁻)
Коллективные эффекты	String fusion	Core-corona (parameterized)	_	_	Colour reconnection, rope hadronization, string shoving

Рождение ho^0 в пион-протонных столкновениях

Description of data not optimal

Sibyll 2.3 (release candidate)

Based on Kampert & Unger, Astropart. Phys. 35 (2012) 660