Выделение сигнала в инклюзивном процессе $pp \to ZZ \to \ell\ell\nu\nu$ в эксперименте АТЛАС на данных второго сеанса работы БАК.

Зубов Дмитрий

Национальный исследовательский ядерный университет «МИФИ»

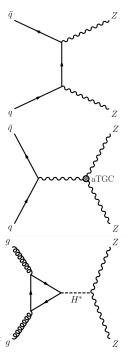
Научный руководитель: Солдатов Е.Ю.

Консультант: Петухов А.М.

13.06.2023

Мотивация и цели

Мотивация:


- ▶ Отсутствие ZZZ или ZZ γ вершин взаимодействия → косвенный поиск эффектов, предсказанных теориями за пределами СМ.
- ightharpoonup pp o ZZ важный фон для процесса рождения бозона Хиггса.

Цели анализа:

- ▶ Получить интегральное и дифференциальные сечения для переменных $p_{\mathsf{T}}^{\ell\ell} = p_{\mathsf{T}}^{\mathsf{Z}}, \ \Delta\phi(\ell\ell), m_{\mathsf{T}}^{\mathsf{ZZ}}, \ M_{\mathsf{jets}}, \ m(j_1, j_2).$
- Поставить пределы на аномальные тройные вершины взаимодействия.

Задача:

 Измерение сечения рождения пар Z-бозонов с использованием классификаторов машинного обучения для повышения точности оценки.

Подходы к оценке интегрального сечения в анализе.

- 1. Подход со «строгим» предотбором событий:
 - Выделение сигнальной области с наилучшим сохранением сигнала и наилучшим подавлением фона.
 - Разработка методики оценки фонов.
 - Оценка интегрального сечения.
- 2. Подход с «расслабленным» предотбором событий и применение классификатора машинного обучения для лучшего разделения сигнала и фона:
 - Выбор расслабленной сигнальной области с относительно хорошим подавлением фона и с большей степенью сохранения сигнала.
 - Создание классификатора машинного обучения.
 - Разработка методики оценки фонов.
 - Оценка интегрального сечения.

Inclusive $ZZ \rightarrow II\nu\nu$

- В событии два разноименно-заряженных лептона одного аромата $(e^+e^-$ или $\mu^+\mu^-)$, при этом, поперечный импульс первого больше 30 ГэВ, второго больше 20 ГэВ;
- Вето на третий заряженный лептон;
- 76 Γ∍B < M_{||} < 106 Γ∍B;</p>
- $ightharpoonup E_{\tau}^{miss} >$ 70 ΓэΒ.
- Отбор объектов описан в бэкапе

	C: 1			
	Signal			
ZZ (~ 0.7%)	Рождение двух Z-бозонов и последующий распад в $II u u$			
	Background			
Zj (~ 85.6%)	рождение Z-бозона и струи, с распадом Z-бозона в пару заря-			
	женных лептонов и большим ложным потерянным попереч-			
	ным импульсом			
tt ($\sim 11.0\%$)	рождение пары топ-кварков и последующим распадом вклю-			
	чающим конечное состояние $\mathit{II} \nu \nu$ (не резонансное рождение			
	llνν)			
WZ (∼ 1.0%)	рождение пары бозонов Z и W, с распадом Z-бозона в пару			
	заряженных лептонов и лептонным распадом W			
WW (~ 0.5%)	рождение пары W с распадом в $II u u$ (не резонансное рожде-			
	ние $ll \nu \nu$)			
Wt (~ 0.9%)	рождение W и топ-кварка и распадом в конечное состояние,			
	содержащее $II u u$ (не резонансное рождение $II u u$)			
Other (4 ℓ , $\ell\ell qq$,	Фоновые процессы, которые вносят незначительный вклад в			
VVV , $Z(\tau\tau)$,	общее число событий и оцениваются с помощью МК			
W + jets)	<□> <□> <□> <=> <=> <=> <=> <=> <=> <=> <=> <=> <=			

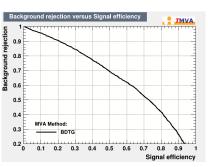
Оптимизация отбора событий. Строгий предотбор событий

• В процессе оптимизации искались пороги на переменные, при которых достигается максимум сигнальной значимости:

$$Z = \sqrt{2 \times [(S+B) \times \ln(1 + (S/B)) - S]}$$

• Сигнальная значимость рассматривалась как функция нескольких переменных и поиск оптимального вектора оптимизируемых отборов осуществлялся перебором всевозможных вариантов ограничения фазового пространства.

Переменная	До	После
E _T ^{miss} , ГэВ	_	>70
ΔR_{II}	_	<1.8
$\Delta \phi(\vec{E}_T^{miss}, \vec{p}_T^{ll})$	_	>2.3
$N_{b-jets} \ E_T^{miss}$ значимость	_	<1
E _T значимость	_	>10


	Сигнал	
QCD ZZ	7600±30	1946±15
EWK ZZ	262±2	13.0±0.04
Всего сигнала	7860±30	$1959{\pm}15$

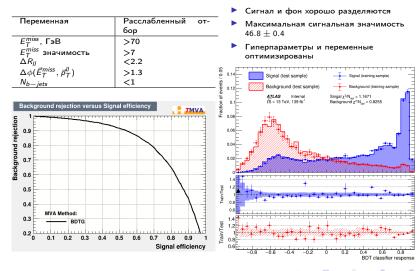
Всего фона	1123000±4000	1368 ± 20
Other	282±2	0.79 ± 0.11
VVV	41.8±0.3	7.88 ± 0.10
Wt	10250±40	41±3
WW	5093±13	64.0±1.5
tt	123340±80	131±2
WZ	11340±30	945 ±8
Zj	963000±4000	180±20
	Фон	


Сигнальная	$5.43{\pm}0.02$	44.7±0.4
значимость		

Результаты тренировки классификатора с «жестким» предотбором событий

Переменная	Жесткий отбор
E _T ^{miss} , ГэВ	>70
E_T^{miss} значимость	>10
ΔR_{II}	<1.8
$\Delta \phi(\vec{E}_T^{miss}, \vec{p}_T^{ll})$	>2.3
N_{b-jets}	<1

- Не удалось достичь хорошего разделения сигнала и фона
- Классификатор переобучен


Выделение «расслабленной» сигнальной области

- Для выделения сигнальной области с расслабленными предотборами производилась оптимизация порогов на переменные.
- В ходе этой оптимизации искался вектор порогов на переменные, соответствующий максимуму сигнальной значимости при условии, что число сигнальных событий >4500.

Переменная	Расслабленный	Жесткий
	отбор	отбор
E _T ^{miss} , ГэВ	>70	>70
E_T^{miss} значимость	>7 <2.2	>10
ΔR_{II}	<2.2	<1.8
$\Delta \phi(\vec{E}_T^{miss}, \vec{p}_T^{ll})$	>1.3	>2.3
Число b-струй	<1	<1
	Сигнал	

QCD ZZ	4410±20	1946 ±15
EWK ZZ	57.8 ±0.9	13.0 ± 0.4
Всего сигнала	4470±20	$1959{\pm}15$
	Фон	•
Zj	12200±300	180±20
WZ	3116 ±15	945 ±8
tt	2829 ±11	131 ±2
WW	1352 ±7	64.0 ±1.5
Wt	729 ±10	41 ±3
VVV	1771 ±0.17	7.88 ± 0.10
Other	4.46 ±0.26	0.79 ± 0.11
Всего фона	20400±300	1370±20

Результаты тренировки классификатора с расслабленным предотбором событий

Описание фита

Интегральное сечение и фон оцениваются в фите, путем максимизации функции правдоподобия:

$$\mathcal{L}(\mu, \theta) = \prod_{r}^{\text{regions}} \left[\prod_{i}^{\text{bins} \in r} \mathsf{Pois}(\textit{N}_{i}^{\mathsf{data}} | \mu \nu_{i}^{s} \eta^{s}(\theta) + \nu_{i}^{b} \eta^{b}(\theta)) \right] \cdot \prod_{i}^{\mathsf{nuis. par.}} \mathcal{L}(\theta_{i}),$$

 $N(\nu)$ — наблюдаемое (прогнозируемое) количество событий μ — коэффициент нормировки сигнала (сила сигнала), $\mu = \nu^s/N^s$.

 θ — коэффициенты нормировки фона и систематические неопределенности.

 η — отражает влияние систематических неопределенностей на число событий в бине.

В фите 4 области (включая сигнальную) и 4 коэффициента нормировки (включая силу сигнала).

Сейчас фит к наблюдаемым данным выполняется только в контрольных областях и набор данных Азимова используется вместо наблюдаемых данных в сигнальной области.

Следующая статистика используется для вычисления ожидаемой значимости и неопределенности $\hat{\mu}$:

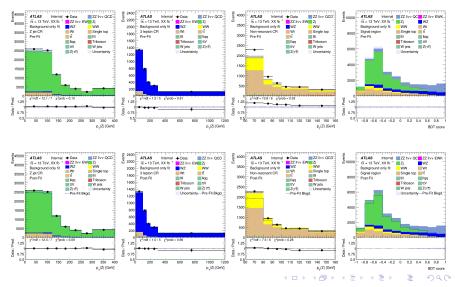
$$q(\mu,\hat{\mu},\hat{\theta}) = -2\ln\lambda(\mu,\hat{\mu},\hat{\theta}) = -2\ln\frac{\mathcal{L}(\mu,\hat{\theta}(\mu))}{\mathcal{L}(\hat{\mu},\hat{\theta})}, \ Z_{\mathsf{disc}}^{\mathsf{exp.}} = \sqrt{q(\mu=1)}\underline{A}. \quad (1)$$

Определение контрольных и сигнальной областей.

Расслабленный вариант ФП:

Переменная	SR	WZ (3ℓ)	NR (eμ)	Zj	
E _T ^{miss.} , ГэВ	>70		>	70	
ΔR_{II}	<2.2		<:	2.2	
$\Delta\phi(ec{E}_T^{miss},ec{p}_T^{II})$, рад	>1.3		>	1.3	
E _T miss. значимость		>7		[4;7]	
m_T^W , ГэВ		>60			

Фит в сигнальной оласти происходил по переменной BDTscore, в контрольных по переменной p_T^Z


Жесткий вариант ФП:

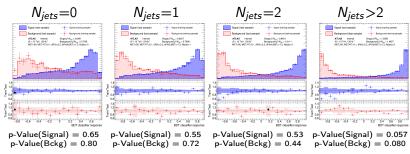
Переменная	SR	WZ (3ℓ)	NR $(e\mu)$	Zj
E _T ^{miss.} , ГэВ	>70		>	70
ΔR_{II}	<1.8		<:	1.8
$\Delta\phi(ec{E}_T^{miss},ec{p}_T^{ll})$, рад	>2.3		>:	2.3
$E_T^{miss.}$ значимость		>10		[4;9]
m_T^W , ГэВ		>60		

Фит в сигнальной и контрольных областях происходил по переменной p_T^Z

- SR область фазового пространства, в которой доля сигнальных событий максимальна.
- WZ(3I) область фазового пространства, в которой доля событий процесса WZ максимальна.
- Non-resonant область фазового пространства, в которой доля событий процессов нерезонансного рождения $\ell^+\ell^-$ максимальна.
- Zj область фазового пространства, в которой доля событий процесса Zj максимальна.

Фит. Распределения до и после для расслабленного варианта ФП.

Фит. Результаты.


Полученное значение силы сигнала μ_{ZZ} применяется при вычисления наблюдаемого сечения: $\sigma_{meas.} = \mu_{ZZ} \cdot \sigma_{SM}$

	«Жесткий» фит по $p^T(Z)$	«Расслабленный» фит по $p^T(Z)$	«Расслабленный» фит по отклику BDT
μZZ	$1.00^{+0.04}_{-0.04}(\text{stat})^{+0.06}_{-0.05}(\text{syst})$	$1.00^{+0.04}_{-0.04}(\text{stat})^{+0.06}_{-0.05}(\text{syst})$	$1.00^{+0.03}_{-0.03}(\text{stat})^{+0.06}_{-0.05}(\text{syst})$
μ_{Zj}	$1.31^{+0.03}_{-0.03}(\mathrm{stat})^{+0.07}_{-0.07}(\mathrm{syst})$	$1.13^{+0.01}_{-0.01}(\mathrm{stat})^{+0.06}_{-0.06}(\mathrm{syst})$	$1.13^{+0.01}_{-0.01}(\mathrm{stat})^{+0.06}_{-0.06}(\mathrm{syst})$
$\mu_{\it NR}$	$1.11^{+0.08}_{-0.07}(\text{stat})^{+0.05}_{-0.05}(\text{syst})$	$1.15^{+0.02}_{-0.02}(\text{stat})^{+0.05}_{-0.05}(\text{syst})$	$1.15^{+0.02}_{-0.02}(\mathrm{stat})^{+0.05}_{-0.05}(\mathrm{syst})$
μ_{WZ}	$1.01^{+0.05}_{-0.05}({\sf stat})^{+0.06}_{-0.05}({\sf syst})$	$0.97^{+0.02}_{-0.02}(\text{stat})^{+0.06}_{-0.05}(\text{syst})$	$0.97^{+0.02}_{-0.02}(\text{stat})^{+0.06}_{-0.05}(\text{syst})$
Ожидаемая значимость	16.8	16.2	26.1

Фит по отклику классификатора BDT в расслабленном фазовом пространстве показывает значительно большую ожидаемую значимость.

Изменения классификатора

- Обучение классификаторов для 4-ех категорий с количеством струй 0, 1, 2 и более 2
- ▶ Добавление переменных, описывающих струи
- ▶ Оптимизация гиперпараметров

Оптимальные

гиперпараметры:

NTrees: 400

Shrinkage: 0.2

MinNodeSize: 10%

	Signal	Bkg	Z
$N_{jets}=0$	1311.96	690.149	40.51
N _{jets} =1	639.818	611.829	22.63
$N_{jets}=2$	234.449	266.918	12.78
$N_{jets} > 2$	139.62	278.742	7.78
Total	2325.85	1847.91	46.36

Заключение

- Велась работа по созданию классификатора.
- Использование классификатора при извлечении сигнала показало снижение статистических ошибок и увеличение ожидаемой.
- Получены стабильные классификаторы с хорошей разделяюей способностью для каждой категории.

Следующие шаги:

 Выполнить фит с учетом систематических погрешностей в расслабленной сигнальной области сравнить его с фитом в строгой сигнальной области.

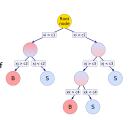
backup

Decision trees with gradient boosting (BDTG)

Decision tree

- A decision tree is a binary tree : a sequence of cuts paving the phase-space of the input variables
- Repeated yes/no decisions on each variables are taken for an event until a stop criterion is fulfilled
- Trained to maximize the purity of signal nodes (or the impurity of background nodes)

Advantages:


- Decision trees are independent of monotonous variable transformations
- Weak variables are ignored and do not deteriorate performance

Disadvantages:

- Decision trees are extremely sensitive to the training samples, therefore to overtraining
- Slightly different training samples can lead to radically different DT

Boosting

- Sequentially apply the DT algorithm to reweighted (boosted) versions of the training data
- Each model in the series trains upon its predecessor's mistakes, trying to correct them
- Works very well on non-optimal decision tree (small number of nodes)
- There are different boosting algorithms and in our work we use the gradient descent

Classifier training parameters

Hyperparameters:

- Number of trees:
- Max depth of the decision tree allowed
- Minimum percentage of training events required in a leaf node
- Number of grid points in variable range used in finding optimal cut in node splitting
- Shrinkage (Learning rate)

Separation into training and test sample:

Random division in equal proportion

- 1. $E_{\rm T}^{\rm miss}$;
- 2. Object-based $E_{\mathrm{T}}^{\mathrm{miss}}$ -significance;
- m_T(ZZ);
- ΔR(ℓℓ);
- p_T^{ℓ1};
- p_T²;
- 7. $p_{T}^{Z} = p_{T}^{\ell \ell}$
- 8. $\frac{p_{\rm T}^Z}{m_{\rm r}(77)}$;
- 9. $H_{\rm T} = p_{\rm T}^{\ell 1} + p_{\rm T}^{\ell 2} + \sum_{i} p_{\rm T}(j_i);$
- 10. $E_{\rm T}^{\rm miss}/H_{\rm T}$;
- 11. $\rho_Z = \frac{p_{\rm T}^Z}{p_{\rm T}^{\ell 1} + p_{\rm T}^{\ell 2}}$
- 12. $\Delta \varphi(\vec{p}_{\mathrm{T}}^{\ell 1}, \vec{p}_{\mathrm{T}}^{\ell 2});$
- 13. $\Delta \varphi(\vec{p}_{T}^{\text{miss}}, \vec{p}_{T}^{\ell \ell});$
- 14. $\frac{p_{\mathrm{T}}^{\ell 1}}{p_{\mathrm{T}}^{\ell 2}}$;
- 15. $\Delta \eta(\ell\ell)$;
- 16. $m(\ell\ell)$;
- 17. yz;
- N_{iets};
- 20. V_T

Object selection

Electrons

- Likehood medium
- ▶ lead > 30 ГэВ
- ▶ sublead > 20 ГэВ
- $\mid \eta \mid$ calo cluster < 2.47
- $|\Delta(z_0)\cdot\sin(heta)|<0.5$
- ▶ $|d_0$ -significance| < 5
- Isolation WP FixedCutLoose
- Crack region veto
- Исключение пересечений с мюонами и струями

Muons

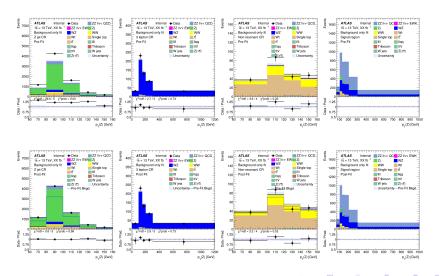
- Medium
- $|\eta| < 2.5$
- ▶ lead > 30 ГэВ
- ▶ sublead > 20 Γ∍B
- Combined muons
- $ullet |\Delta(z_0)\cdot\sin(heta)|<0.5$
- ▶ $|d_0$ -significance| < 3
- ▶ Isolation WP E₁
 PflowLoose_FixedRad
- Исключение пересечений со струями

Jets

 $E_{\rm T}^{\rm miss}$

- AntiKt4EMPFlow
- ► > 30 ГэB
- |η| < 4.5</p>
- ▶ JVT > 0.5
 - Event-level cleaning for LooseBad jets
 - Tight WP, rebuilt with METMaker using selected leptons and all calibrated jets

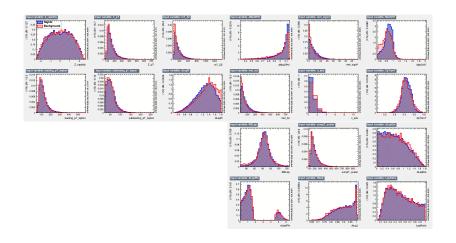
Изменения в сигнальной области


- lacktriangle Отказ от определения СР с переменной $E_{
 m T}^{
 m miss}$ -значимости из-за сложности в использовании на уровне генератора.
- lacktriangle Добавлены переменные $E_{
 m T}^{
 m miss}/H_{
 m T}$ и $m_{\ell\ell}$
- Оптимизация отбора событий также проводилась путем максимизации значимости сигнала Z с использованием многомерного подхода.

	Строгий	Расслаблены	й		
$m_{\ell\ell}$, ГэВ	€ [80; 100]	∈ [76; 106]		Строгий	Расслабленый
$E_{T}^{miss.}$, ГэВ $\Delta R(\ell\ell)$	> 110 < 1.8	> 90 < 2.2	Сигнал Фон	$1562 \pm 15 \\ 1007 \pm 17$	3810 ± 20 25000 ± 300
$\Delta arphi (E_{T}^{miss}, ec{\ell\ell}) \ E_{T}^{miss} / H_{T}$	> 2.7 > 0.65	> 1.3 > 0.1	Z	41.1 ± 0.4	23.5 ± 0.2
N _{b-jets}	= 0	= 0			

Selection optimization details

- $ightharpoonup E_T^{miss.}$, [50; 1500] GeV, a step of 10 GeV;
- ▶ $\Delta R(\ell\ell)$, [0; 4], a step of 0.1;
- $ightharpoonup \Delta \varphi(\mathsf{miss}, \ell\ell)$, [0; 3.15], a step of 0.1;
- $ightharpoonup E_T^{miss.}/H_T$, [0; 2], a step of 0.05;
- ▶ $N_{\text{b-jets}}$, events with $\{0,1,2,3,\geq 4\}$ b-jets.


Fit. Before and after distributions for the strict version of the phase space

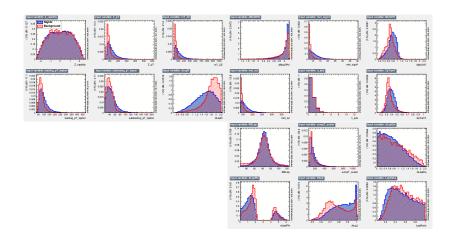
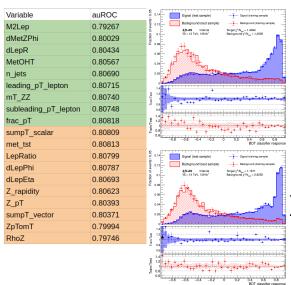

Theoretical		Ex	Experimental		
PDF	3.5%	Lepton.	2.0%		
Scale	2.0%	Jet.	2.0%		
UEPS	2.0%	$E_T^{miss.}$	1.1%		

Таблица: Main sources of Theoretical и Experimental errors


Variables. Strict preselection.

Variables. Loose preselection

Отбор переменных

- Идея в том, чтобы измерить важность переменной, глядя на сколько увеличивается auROC, когда переменная добавляется.
 - Отбор начинается с одной переменной с наибольшим аиROC и последовательно добавляет переменную из оставшихся N — n с самым высоким auROC.
 - Это предполагает обучение BDT для каждого из N — п комбинации для определения auROC и нахождения лучшей комбинации.

Увеличение значимости с 46.1 ± 0.4 до 46.8 ± 0.4

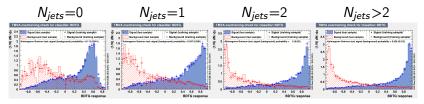
Training setup

Variable	N _{iets} =0	N _{iets} =1	N _{iets} =2	N _{iets} >2
mT ZZ	V	V	√	1
leading pT lepton	✓	√	√	√
subleading pT lepton	✓	✓	✓	√
dLepR	✓	✓	✓	√
dMetZPhi	√	√	√	√
E ^{miss} signif .	✓	√	✓	✓
frac_pT	✓	✓	✓	√
MetOHT	✓	✓	✓	√
M2Lep	✓	✓	✓	√
leading _jet _pt	_	✓	✓	√
leading _jet _rapidity	_	✓	✓	√
second _ jet _ pt	_	_	✓	√
second jet rapidity	_	_	✓	√
mjj	_	_	✓	√
dYjj			✓	√
jet_vsum_pt		_	√	√
jet_vsum_eta	_	_	✓	√
jet_vsum_phi	_	_	√	√

Preselection		
E _T ^{miss} , GeV	>90	
$\Delta R_{ }$	<2.2	
$\Delta \phi(\vec{E}_T^{miss}, \vec{p}_T^{ll})$	>1.3	
N _{b-jets}	<1	
E _T ^{miss} /H _T	>0.1	

Hyperparameter optimization

- Hyperparameter optimisation (HPO) has been used to improve separation power while maintaining stability.
- \triangleright Optimised metrics Z, with condition p-valuee>0.05%
- Training and test samples were randomly allocated each time, avoiding bias (SplitMode=random:SplitSeed=0)
- ► Hyperparameters (HP) under consideration:
 - NTrees: 100, 200, 300, 400, 600, 800, 1000
 - Shrinkage: 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0
 - MinNodeSize: 0.2%, 0.5%, 1%, 2%, 5%, 10%, 20%


$$Z = \sqrt{2 \times \left[(S+B) \times \ln \left(1 + (S/B) \right) - S \right]}$$

A detailed comparison of all classifiers is shown in the table.

Изменения классификатора

- ▶ Обучение классификаторов для 4-ех категорий с количеством струй 0, 1, 2 и более 2
- Добавление переменных, описывающих струи

- Уменьшилась статистика
- Для некоторых категорий классификатор получается переобученным при прежних настройках
- Необходимость обновления оптимизиации гиперпараметров

Оптимизация гиперпараметров

- Hyperparameter optimisation (HPO) has been used to improve separation power while maintaining stability.
- ▶ Optimised metrics Z, with condition p-valuse>0.05%
- Training and test samples were randomly allocated each time, avoiding bias (SplitMode=random:SplitSeed=0)
- Hyperparameters (HP) under consideration:
 - NTrees: 100, 200, 300, 400, 600, 800, 1000
 - Shrinkage: 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0
 - MinNodeSize: 0.2%, 0.5%, 1%, 2%, 5%, 10%, 20%

$$Z = \sqrt{2 \times [(S+B) \times \ln(1 + (S/B)) - S]}$$

A detailed comparison of all classifiers is shown in the table.

Signal	Bkg	Signif.

Z-optimized

$N_{jets} = 0$	1311.96	690.149	40.51
$N_{jets}=1$	639.818	611.829	22.63
N _{jets} =2	234.449	266.918	12.78
N _{jets} >2	139.62	278.742	7.78
Total	2325.85	1847.91	46.36

AUC-optimized (previous results)

Ace optimized (previous results)				
$N_{jets}=0$	1415.59	837.336	40.35	
$N_{jets}=1$	653.12	621.09	22.91	
$N_{jets}=2$	244.35	301.53	12.62	
$N_{jets}>2$	167.0	439.5	7.67	
Total	2480.06	2041.89	47.23	

No jet	2237.84	1673.63	46.53
separation			
(previous			
results)			

$$= \frac{1}{\sqrt{2 \times [(S+B) \times \ln(1+(S/B)) - S]}}$$

Selection of classifier hyperparameters

- ► The performance of the classifier varies from training to training. In other words, a classifier that previously showed excellent performance may perform worse the next time with the same settings.
- During HPO, specific HPs were not selected, but patterns in setting, stability, and separation power were observed:
 - 0. The larger Z is, the more unstable the classifier is. Therefore, it is essential to find a compromise set of HP.
 - 1. Classifiers with the highest Z usually have a relatively large number of trees.
 - 2. Classifiers with the highest Z usually have a relatively large number of trees (400-1000) and shrinkage (0.1-0.5).
 - 3. At large values of minnodesize (20%), the classifiers had the lowest separating power, but at the value of this parameter of 10%, stable classifiers with large Z were observed.
- ► Thus, one set of hyperparameters was defined for all categories, at which the classifier has good stability and separability:

NTrees: 400

► Shrinkage: 0.2

MinNodeSize: 10%

Inclusive $ZZ \rightarrow II\nu\nu$

- ▶ Vertex with 2 tracks with $p_T > 1$ GeV
- ▶ Two same flavour opposite-sign leptons (e+e- OR mu+mu-), leading p_T >30 GeV, subleading p_T >20 GeV
- ▶ Veto on any additional lepton with Loose ID and $p_T > 7$ GeV
- ▶ $76 < M_{\ell\ell} < 106 \text{ GeV}$
- $ightharpoonup E_T^{miss} > 70 \text{ GeV}.$

Process	% of background	
	Strict	Loose
$WZ ightarrow \ell u \ell \ell$ — one missing ℓ mimics the signal topology	68%	12%
$Z(o \ell\ell)$ + jets $-$ lepton pair with mismeasured $E_{ extsf{T}}^{ ext{miss}}$	15%	69%
$\stackrel{ extstyle V}{W} ightarrow \ell u \ell' u' - extstyle $	3%	3%
Wt , t , $t\bar{t}$, ttV — non resonant production of a lepton pair via t -quark	9%	15%
Other backgrounds: 4 ℓ , $\ell\ell qq$, VVV , $Z(au au)$, $W+$ jets	5%	1%