Взаимодействие «тёмных» атомов с веществом и его физические, астрофизические и космологические проявления

Национальный исследовательский ядерный университет «МИФИ»

Аспирант: **Бикбаев Тимур Эдуардович** Научный руководитель, д.ф.-м.н., проф.:

Хлопов М.Ю.

Научный консультант, к.ф.-м.н., доц.:

Майоров А.Г.

Сценарии гипотетических, стабильных,

электрически заряженных частиц.

В нашей научно-исследовательской работе мы рассматриваем сценарий составной скрытой массы, в котором гипотетические, стабильные, реликтовые, лептоноподобные, массивные частицы Х с зарядом -2n (где n это натуральное число) избегают экспериментального открытия, потому что они связаны кулоновским взаимодействием с n ядрами первичного гелия в нейтральные атомоподобные состояния ХНе (Х–гелия), называемые "тёмными" атомами.

<u>В случае n=1 частица X называется 0⁻⁻, а тёмный атом, - О-гелием.</u>

Иллюстрация "тёмного" атома ОНе и внешнего ядра вещества А

Модель *ХНе* и решение проблемы прямых поисков частиц скрытой массы.

"Тёмные" атомы ХНе обеспечивают современную плотность нерелятивистского вещества и играют роль нетривиальной формы сильно взаимодействующей скрытой массы.

<u>Результаты экспериментов DAMA/Nal и DAMA/LIBRA можно объяснить годичными</u> <u>модуляциями энерговыделения при формировании низкоэнергетического</u> <u>связанного состояния *XHe* с ядрами.</u>

Детектор	Ядра	А	Z	Температура	Обнаружение
DAMA (/Nal + /LIBRA)	Na I TI	23 127 205	11 53 81	300 K	13 σ
CoGeNT	Ge	70-74	32	70 K	2.8 σ
CDMS	Ge (Si)	70-74 (28-30)	32 (14)	Криогенный	—
XENON100	Xe	124-134	54	Криогенный	_
LUX	Xe	124-134	54	173 K	_

Проблема гипотезы Х – гелия.

Возможность существования низкоэнергетического связанного состояния *XHe* с ядрами и доминантность упругих процессов в сценарии "тёмного" атома основывается на гипотезе о наличии потенциального барьера в процессах взаимодействия *X*-гелия с ядрами вещества, требующей корректного квантово-механического обоснования.

Задача: разработка численной модели взаимодействия Х-геля с ядром вещества.

Цель работы: восстановление формы эффективного потенциала взаимодействия ХНе с

ядром вещества.

Квантово-механический расчёт.

$$d_{kl} = e \; \int_V \Psi_k^*(x,y,z) \cdot x \cdot \Psi_l(x,y,z) \; dV$$

Электрический потенциал Х-гелия.

Уравнение Шрёдингера для ядра гелия.

$$\vec{R}_{HeA} = \vec{R}_{OA} - \vec{r} \qquad \hat{H} = \hat{H}_0 + \hat{U} \qquad \hat{H}\Psi = E\Psi$$

$$\Delta \Psi + \frac{2m_{He}}{\hbar^2} \left(E + \frac{4e^2}{r} - \frac{2e^2 Z_A}{|\vec{R}_{OA} - \vec{r}|} - U_N(|\vec{R}_{OA} - \vec{r}|) \right) \Psi = 0$$

Одномерное уравнение Шрёдингера для атома О-гелия.

$$\Delta_r \Psi + \frac{2m_{He}}{\hbar^2} \left(E + \frac{4e^2}{r} \right) \Psi = 0$$

Энергетический спектр ядра гелия в потенциале тёмного атома и соответствующие этим уровням графики квадрата модуля волновой функции

Потенциал взаимодействия гелия в системе ОНе – ядро.

Графики зависимости ядерного потенциала типа Вудса-Саксона, кулоновского потенциала и суммарного потенциала взаимодействия для Не в системе ОНе–Na от радиус-вектора гелия при фиксированном радиус-векторе ядра натрия **1**

Спектр энергетических уровней ядра гелия в суммарном потенциале системы ОНе–Na и соответствующие этим уровням графики квадрата модуля волновой функции **14/18**

радиус-вектора внешнего ядра натрия

График зависимости величины дипольного момента поляризованного атома *ОНе* от радиус-вектора ядра натрия **16/18**

Графики зависимости ядерного потенциала типа Вудса-Саксона, U^e_{XHe} , потенциала Штарка и суммарного потенциала от расстояния между Не и ядром Na.

- В работе построена численная модель взаимодействия «тёмного» атома *ОНе* с ядром в квантовомеханическом подходе восстановления эффективного потенциала взаимодействия в каждой точке.
- Решено одномерное уравнение Шрёдингера для ядра гелия в системе ОНе-Na.
- Квантово-механическим способом вычислена величина поляризации атома скрытой массы, используя которую рассчитан потенциал Штарка.
- Восстановлена форма эффективного потенциала взаимодействия ОНе с ядром, качественно удовлетворяющая теоретически ожидаемой.
- Для улучшения точности результатов расчёта эффективного потенциала взаимодействия и их интерпретации планируется доработать квантово-механический подход восстановления эффективного потенциала взаимодействия.

Дополнительные слайды

Структура связанного состояния Х-гелия.

Структура связанного состояния Х-гелия зависит от значения параметра:

$$a = Z_{\alpha} Z_X \alpha A m_p R_{nHe}$$

При 0 < а < 1 связанное состояние выглядит как атом Бора с дважды отрицательно заряженной частицей 0⁻⁻ в остове и ядром Не, движущимся по боровской орбите.

$$I_0 = \frac{Z_{O^{--}}^2 Z_{He}^2 \alpha^2 m_{He}}{2} \approx 1.6 \text{ МэВ} \qquad R_b = \frac{\hbar c}{Z_{O^{--}} Z_{He} m_{He} \alpha} \approx 2 \cdot 10^{-13} \text{ см}$$

 При 1 < а < со связанные состояния выглядят как атомы Томсона, в которых тело ядра nHe колеблется около тяжелой отрицательно заряженной частицы X.

$$\begin{split} & \vec{\delta} = \frac{Z_{\alpha}\vec{E}}{Z_X4/3\pi\rho} + \frac{\vec{F}_{\alpha}^N}{eZ_X4/3\pi\rho} \quad \rho = \frac{Z_{\alpha}e}{4/3\pi R_{nHe}^3} & U_{St} = eZ_{\alpha}E\delta \\ & \vec{F}_{St} = -\operatorname{grad}U_{St} \end{split}$$

Траектории движения альфа-частицы и частицы O^{--} в плоскости ХҮ

Суммарный потенциал взаимодействия.

частицы O^{--} при нулевом прицельном параметре.

Na в модели Бора при нулевом прицельном параметре

График зависимости величины дипольного момента от расстояния между частицей O^{--} и ядром-мишенью

Суммарный потенциал взаимодействия между ОНе и ядром-мишенью Na в зависимости от радиус-вектора частицы O^{--} при ненулевом прицельном параметре

Na в модели Бора при ненулевом прицельном параметре

Подход восстановления эффективного потенциала взаимодействия ХНе с ядром с ядерной силой типа Вудса-Саксона.

Графики зависимости ядерного потенциала типа Вудса-Саксона, U^e_{XHe} , потенциала Штарка и суммарного потенциала от расстояния между Не и ядром Na.

Ядерная сила с учётом неточечности взаимодействующих ядер.

$$\begin{split} U_N(R) &= 2C_0 A_1 \left(\frac{\gamma^2}{\pi}\right)^{1/2} e^{-\gamma^2 R^2} \frac{1}{R} \int_0^\infty e^{-\gamma^2 r^2} \frac{\rho_2(r)}{\rho_{00}} \left[(F_{\rm in} - F_{\rm ex}) \left(\rho_2(r) \sinh(2\gamma^2 R r) + \frac{A_1}{4} \left(\frac{\gamma^2}{\pi}\right)^{3/2} e^{-\gamma^2 (r^2 + R^2)} \sinh(4\gamma^2 R r) + \rho_{00} F_{\rm ex} \sinh(2\gamma^2 R r) \right] r dr \,. \end{split}$$

Подход восстановления эффективного потенциала взаимодействия XHe с ядерной силой учитывающей неточечность взаимодействующих ядер.

и суммарного потенциала от расстояния между Не и ядром Na.

График зависимости величины дипольного момента от расстояния между частицей O^{--} и ядром-мишенью Na при определении ядерного взаимодействия ядерной силой типа Вудса-Саксона

График зависимости величины дипольного момента от расстояния между частицей O^{--} и ядром-мишенью Na при определении ядерного взаимодействия ядерной силой учитывающей неточечность взаимодействующих ядер

