ИЗМЕРЕНИЕ ПОЛЯРИЗАЦИОННЫХ УГЛОВЫХ КОЭФФИЦИЕНТОВ В ПРОЦЕССАХ **ЛЕПТОННОГО РАСПАДА W-БОЗОНА В** ЭКСПЕРИМЕНТЕ АТLAS

Научный руководитель: Солдатов Е. Ю. Выполнил: Толкачев Г.А.

29.06.2023

Дифференциальное сечение распада W-бозона

Представление дифференциального сечения в виде разложения по гармоническим полиномам, умноженным на безразмерные угловые коэффициенты A_{0-7}

А0-7 представляют отношение дифференциальных сечений с заданной поляризацией к неполяризованному сечению.

$$A_{0} = \frac{2d\sigma^{L}}{d\sigma^{U+L}} \quad A_{1} = \frac{2\sqrt{2}d\sigma^{I}}{d\sigma^{U+L}} \quad A_{2} = \frac{4d\sigma^{T}}{d\sigma^{U+L}} \quad A_{3} = \frac{4\sqrt{2}d\sigma^{A}}{d\sigma^{U+L}} \quad A_{4} = \frac{2d\sigma^{P}}{d\sigma^{U+L}} \quad A_{5} = \frac{2d\sigma^{7}}{d\sigma^{U+L}} \quad A_{6} = \frac{2\sqrt{2}d\sigma^{8}}{d\sigma^{U+L}} \quad A_{7} = \frac{4\sqrt{2}d\sigma^{9}}{d\sigma^{U+L}} \quad A_{8} = \frac{2d\sigma^{7}}{d\sigma^{U+L}} \quad A_{8} = \frac{2d\sigma^{7}}{d\sigma^{U+L}$$

$$= \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_T dy} \left[(1 + \cos^2 \theta) + \sum_{i=0}^7 P_i(\cos\theta, \phi) A_i(p_T, y)) \right]$$

$$\begin{aligned} -3\cos^{2}(\theta) & P_{4}(\cos\theta,\phi) = 4\sqrt{2}\sin(\theta)\cos(\phi) \\ P_{5}(\cos\theta,\phi) = 2\sin^{2}(\theta)\cos(2\phi) \\ P_{5}(\cos\theta,\phi) = 2\sqrt{2}\sin^{2}(\theta)\cos(2\phi) \\ P_{6}(\cos\theta,\phi) = 2\sqrt{2}\sin^{2}(2\theta)\cos(\phi) \\ P_{6}(\cos\theta,\phi) = 4\sqrt{2}\sin(\theta)\cos(\phi) \end{aligned}$$

Мотивация и цель работы

Мотивация:

- - регистрируется напрямую детектором ATLAS
 - В недавним исследованиям [1] предложен способ обойти это ограничение
- - Например: m_W (ATLAS @ 7 TeV) = 80370 ± 7 (stat) ± 11 (exp. sys) ± 14 (mod. sys) M9B

Цель:

- Измерение коэффициентов A_i в процессах с лептонным распадом W-бозона в псевдоданных.
 - Интерпретация измерений углового коэффициента A_4 и сечения A_9 с помощью метода профайлинга
 - измерению массы W-бозона

В работе использовались данные с низким средним числом взаимодействий при столкновении, набранные на детекторе ATLAS в 2017 и 2018 с интегральной светимостью 335 пб⁻¹

[1] https://arxiv.org/abs/1609.02536

Полный набор поляризационных угловых коэффициентов A_i для распадов W бозона не измерен • Проблемы с полной реконструкции W бозона из-за нейтрино в конечном состоянии, который не

Угловые коэффициенты A₄ и A₉ имеют прямое ограничение партонных функций распределения (ПФР) • Погрешность от набора ПФР вносит доминирующий вклад в полную погрешность для многих измерений Новые наборы ПРФ можно использовать для снижения погрешности ПФР в различных анализах

Оценка уменьшения ПФР погрешности для кинематических переменных, используемых в независимом анализе по

Параметризация ПФР:
$$xf(x, Q_0^2) = A_f x^{a_f} (1 - x)^{b_f} I_f(x)$$

Метод Гессе $\chi^2(\alpha) \approx \chi^2(a^0) + \sum_{i=1}^n H_{ij}(a_i - a_i^0)(a_j - a_j^0) \quad H_{ij} = \frac{1}{2} \frac{\partial^2 \chi^2}{\partial a_i \partial a_j}$

Перевзвешивание набора ПФР

$$w = \frac{x_1 g_{i/B_1(x_1;Q^2)}}{x_1 f_{i/B_1(x_1;Q^2)}} \cdot \frac{x_2 g_{i/B_2(x_2;Q^2)}}{x_2 f_{i/B_2(x_2;Q^2)}}$$

ффициент перевзвешивания из старого ПФР

 $xf(x, Q^2)$ Коэффициент перев в новый ПФР $xg(x, Q^2)$.

Толкачёв Григорий

- Для всех коэффициентов A_i погрешность ПФР на порядок ниже статистической погрешности измерения
 - Погрешность от собственных векторов меньше на 1-2 порядка
 - Погрешность от α_{c} меньше на 2–3 порядка
- Результат напрямую связан с методикой измерения поляризационных угловых коэффициентов A_i и является ожидаемым

Толкачёв Григорий

- p_{T}^{h} [GeV]
- 3.5 ly[∿]l

- Результат получен с учетом всех систематических погрешностей, в т.ч. погрешностей на энергию отдачи адрона и погрешности на оценку КХД фона (предоставленных командой)
- Поведение A_i в сравнении с аналогичными измерениями A_i в распада Z⁰ бозона выглядит схожим образом
- A_0, A_1, A_2 чувствительны к поляризации Wбозона
- $A_0 A_2 = 0$ сохраняется в LO, но нарушается в более высоких порядках
 - Одно из объяснений существование скалярных глюонов
- A_1 и A_4 чувствительны к значениям векторных и аксиально-векторных констант связи
 - А₄ отвечает за асимметрию вылета впередназад $A_{FB} = 3/8A_4$
- $A_5 A_7$ и A_1 должны иметь центральные значения отличные от нуля в NNLO
 - Недостаточная статистическая сила анализа

Интерпретация измерений угловых коэффициентов

Профайлинг набора ПФР

Метод профайлинга используется для оценки влияния новых экспериментальных измерений на набор ПФР

$$\chi^{2}(\beta_{exp},\beta_{th}) = \sum_{i=1}^{N_{data}} \frac{(\sigma_{i}^{exp} + \sum_{j} \Gamma_{ij}^{exp} \beta_{j,exp} - \sigma_{i}^{th} - \sum_{k} \Gamma_{ik}^{th} \beta_{k,th})^{2}}{\Delta_{i}^{2}} \quad (1)$$

Выполнен профайлинг с угловым коэффициентом A_4 и сечением A_9 ,

- Коэффициенты получены на псевдоданных с $\mathscr{L}=335$ пб $^{-1}$
- A_4 и A_9 измерены отдельно в каналах $W^+ \to e^+ \nu$ и $W^- \to e^- \nu$
 - масштабный коэффициент
- В профайлинге были использованы наборы ПФР СТ18, HERAPDF2.0, MSHT20 и NNPDF4.0
- - Набор центральных значений и их полной погрешности
 - Матрицы корреляции между систематическими погрешностями для A_4 и сечения A_9 , используемые в Уравнении №1

Для оценки возможного вклада в статистическую погрешность от мюонных каналов был применен

По аналогии выполнен профайлинг с A_4 и $A_9~$ полученным с погрешностью соответствующей $\mathscr{L}=3.35$ фб $^{-1}$ Для профайлинга использовалось программное обеспечение xFitter. Для него подготовлены входные данные:

Измерение коэффициентов A_i позволяет уточнять партонные функций при значениях доли импульса $xpprox 10^{-4}-10^{-1}$ • Уменьшение погрешности при использование обоих A_4 и A_9 коэффициентов при $\mathscr{L}=335$ пб $^{-1}$ составляет • для u_V и d_V до 2%, для $ar{u}$ и $ar{d}$ до 1%, для g до 0.5% в интервале [$10^{-4}, 10^{-1}$] • Комбинирование A_4 и A_9 при 3.35фб⁻¹ показывает улучшения относительной погрешности:

- - для d_V до 7%, для u_V до 4%, для d и $ar{u}$ до 1.5%, для gдо 1% в интервале [10^{-4} , 10^{-1}]
- По аналогии проводился профайлинг отдельно с A_4 и A_9
 - результат уступает полученному при комбинировании A_4 и A_9
- Также, аналогичные исследования проведены для наборов ПФР:
 - MSHT20, HERAPDF2.0, NNPDF4.0

δxd_v/xd

Оценка уменьшения погрешности ПФР для распределений

- Процесс измерения m_W является отдельной задачей
 - новые ПФР наборы предоставлены коллегам по коллаборации
 - Для предварительной оценки использовался сигнальный регион аналогичный
 - используемому в анализе по измерению массы W-бозона в данных $\mathscr{L} = 335$ пб $^{-1}$
 - В анализе измерения массы W-бозона используется переменные p_T и m_T
 - предварительная оценка вклада погрешности ПФР не учитывает корреляции

⁻¹) σ ⁻¹) -1		CT18 (2019)	HERAPDF2.0 (2015)	MSHT20 (2020)	NNF (2
) б ⁻¹) 335пб ⁻¹)	A ₄ (335пб ⁻¹)	4 %	1.6 %	1 %	0
3.35фб ⁻¹)	А ₉ (335пб ^{−1})	39 %	18 %	16 %	
	A ₄ + A ₉ (335пб ⁻¹)	48 %	28 %	23 %	5
	A ₄ (3.35фб ⁻¹)	11 %	8 %	3 %	
	A ₉ (3.35фб ⁻¹)	58 %	54 %	48 %	1
	A ₄ + A ₉ (3.35фб ⁻¹)	70 %	65 %	56 %	2

Заключение

- Проведено измерение поляризационных угловых коэффициентов A_i W-бозона с использованием псевдоданных в электронном канале распада

 - эксперименте ATLAS
- метода профайлинга
 - Для профайлинга были подготовлены входные файлы для программы xFitter
 - MSHT20, HERAPDF2.0, NNPDF4.0
- независимом анализе измерения массы W-бозона

• Проанализирован вклад погрешности от набора ПФР СТ10 в измерение коэффициентов A_i • Выполнена оценка вклада систематических погрешностей в контрольные распределения, связанных с эффективностью триггера, идентификацией, реконструкцией и изоляцией в

• Проведена интерпретация измерений углового коэффициента A_4 и сечения A_9 с помощью

• Выполнен профайлинг с коэффициентом A_4 и сечением A_9 для наборов ПФР СТ18,

• Полученные новые наборы ПФР использованы для оценки уменьшения погрешности ПФР в

• В ходе работы были получены сведения о глобальном анализе КХД и методике профайлинга

Спасибо за внимание!

Дополнительные слайды

Профайлинг с A_{1} и A_{0} для набора ПФР СТ18

Толкачёв Григорий

Профайлинг с A_1 и A_0 для набора ПФР HERAPDF2.0

Толкачёв Григорий

δ**xg/xg** ^px/^px_Q $Q^2 = m_W^2$ $Q^2 = m_W^2$ HERAPDF2.0NNLO HERAPDF2.0NNLO +A4+A9 +A4+A9 +A4+A9 (sf = 10) +A4+A9 (sf = 10) 1.1 1.1⊦ 0.9 x Fitter x*Fitter* 0.9 10^{-3} **10⁻²** 10^{-3} **10⁻²** 10⁻⁴ **10⁻¹** 10^{-4} **10**⁻¹ Χ **פאן/צ**ק גע $Q^2 = m_W^2$ ۵<mark>۸//w//htt</mark> $Q^2 = m_W^2$ HERAPDF2.0NNLO HERAPDF2.0NNLO +A4+A9 +A4+A9 +A4+A9 (sf = 10) 1.1 1.4 1.2 0.8 0.9 0.6 x Fitter x Fitter 10^{-3} **10⁻²** 10^{-4} **10⁻¹** 10^{-3} **10⁻² 10**⁻¹ 10^{-4} Χ

Профайлинг с A_1 и A_0 для набора ПФР MSHT20

Толкачёв Григорий

Толкачёв Григорий

Оценка систематических погрешностей Значение систематичких погрешностей в зависимости от поперечного импульса $p_T^{l u}$ и быстроты $y^{l u}$

- Величина всех погрешностей уменьшается с ростом импульса $p_T^{l
 u}$ и быстроты $y^{l
 u}$
- Наибольших вклад в полную погрешность вносит п связанная с эффективностью идентификации элект
- Полная систематическая погрешность для $p_T^{l\nu}$ соста для $y^{l\nu}$ составляет 0.16%.

и поперечного	Группа погрешности	$p_T^{l u},\%$	$ y^{l u} $
	ElIDSys	0.15	0.1
югрешность,	ElIsoSys	0.03	0.0
тронов	ElTrigSys	0.06	0.0
авляет 0.19%. а	ElRecoSys	0.1	0.0
	Total	0.19	0.1

Electron	Muon				
Tight ID	Medium ID				
p _T > 2	5 GeV				
ŋ <	< 2.4				
1.37 < η < 1.52					
ptvarcone	20/p _T < 0.1				
topoetcone20/p _T < 0.05					
d ₀ sig < 5	d ₀ sig < 3				
$\Delta z_0 \sin\theta < 0.5$					

Факторизация

$$\sigma_{pp \to X} = \sum_{i,j} \int dx_1 dx_2 (f_i^p(x, Q^2)) f_j^p(x, Q^2) \int_{Q^2} dx_1 dx_2 (f_i^p(x, Q^2)) f_j^p(x, Q^2) dx_1 dx_2 (f_i^p(x, Q^2)) \int_{Q^2} dx_1 dx_2 (f_i^p(x, Q^2)) f_j^p(x, Q^2) dx_1 dx_2 (f_i^p(x, Q^2)) \int_{Q^2} dx_1 dx_2 (f_i^p(x, Q^2)) f_j^p(x, Q^2) dx_1 dx_2 (f_i^p(x, Q^2)) dx_$$

Сечение процесса представляется свёрткой функций распределений партонов в протоне (ПФР) и 106 вычисляемого в КХД сечения жесткого процесса.

$$x_1 = \frac{M_W}{\sqrt{s}} e^{+y_W}, \ x_2 = \frac{M_W}{\sqrt{s}} e^{-y_W}$$

• Использование экспериментальных измерений в эксперименте ATLAS, позволяет уточнять партонные ^ъ функций при больших значениях $Q^2 = m_{W\!/\!Z}^2$ и малых 10³ значениях доли импульса $x \approx 10^{-4} - 10^{-1}$ 10²

 10^{1}

жесткого процесса

Использованные данные

- столкновении протон-протонных пучков с энергией 13 ТэВ.
- данных в 2017 и 2018 году.

• Экспериментальные данные, набранные на детектора ATLAS в 2017 и 2018 году с полной интегральнои светимостью 335 по 1 и низким <mu>. При

• Монте-Карло данные, соответствующие условиям реальных протон-протонных столкновений эксперимента ATLAS во втором сеансе набора

Методика измерения

$$L(A, \sigma) = \prod_{n}^{N_{bins}} \left\{ Pois(N_{obs}^n | N_{exp}^n(A, \sigma)) \right\}$$

$$N_{exp}^{n}(A,\sigma) = \left\{ \sum_{j=0}^{10} \sigma_{j} \left[T_{8j}^{n} + \sum_{i=0}^{7} A_{ij} T_{ij}^{n} + T_{B}^{n} \right] \right\}$$
$$n = (k, l, m), k = 0, \quad 7, l = 0, \quad 7, m = 0, \quad 9$$

$$T^{mkl} - \sum_{P(cos A^{Truth} \Delta^{Truth})} W^{evt}(r, t)$$

$$I_{ij}^{max} = \sum_{evt \in \Delta_{jmkl}} P_i(\cos\theta_{CS}^{Truin}, \phi_{CS}^{Truin}) \frac{1}{f_j(\cos\theta_{CS}^{Truth}\phi_{CS}^{Truth})}$$

$$\Delta_{jmkl} = (\Delta p_T^{Truth,W})_j, (\Delta cos\theta_{CS}^{Reco})_m, (\Delta \phi_{CS}^{Reco})_k, (\Delta p_T^{Reco,W})_l$$

$$f_{j}(\cos\theta_{cs}^{Truth}\phi_{cs}^{Truth}) = \sigma_{j} \Big\{ P_{8}(\cos\theta_{CS}^{Truth}, \phi_{CS}^{Truth}) + \sum_{i=0}^{8} A_{ij}^{ref} P_{i}(\cos\theta_{CS}^{Truth}, \phi_{CS}^{Truth}) + \sum_{i=0}^{8} A_{ij}^{ref} P_{i}(\cos\theta_{CS}^{Truth}, \phi_{CS}^{Truth}) \Big\} \Big\} = \sigma_{j} \Big\{ P_{8}(\cos\theta_{CS}^{Truth}, \phi_{CS}^{Truth}) + \sum_{i=0}^{8} A_{ij}^{ref} P_{i}(\cos\theta_{CS}^{Truth}, \phi_{CS}^{Truth}) \Big\} \Big\} \Big\}$$

Количетсво бинов, в которых производится измерение: 8x8x8x10 = 5120 29/06/2023 Толкачёв Григорий

- $L(A, \sigma)$ функция правдоподобия
- ► $N_{exp}^n(A, \sigma)$ число ожидаемых событий в измеряемом интервале трех кинематических переменных ($cos\theta_{CS}^{Reco}, \phi_{CS}^{Reco}, p_{T}^{Reco,W}$)
- ► *А* набор параметров для угловых коэффициентов *A*_{*ii*}
- • A_{ij} параметр, определяющий i угловой коэффициент для jинтервала по переменной $p_T^{Truth,W}$
- ► Tⁿ_{ii} набор шаблонных распределений, измеряемых в каждом интервале (m, k, l) переменных $(cos\theta_{CS}^{Reco}, \phi_{CS}^{Reco}, p_T^{Reco, W})$
- ▶ T_{8j}^n шаблонное распределение, соответствующее полиному P_8
- ► T_B шаблонное распределение для фоновых процессов
- ► σ набор параметров для σ_i
- ho σ_j параметр, определяющий неполяризационное сечение для jинтервала переменной $p_T^{Truth,W}$
- ► *А_{ii}^{Ref}* набор референсных угловых коэффициентов

Метод моментов

Метод моментов используется для оценки неизвестных параметров распределения, основанный на предполагаемых свойствах его моментов. Суть метода заключается в нахождение числовых параметров теоретического распределения через моменты, оценённые по выборке.

$$\langle P_i(\cos\theta,\phi)\rangle = \frac{\int P_i(\cos\theta,\phi)d\sigma(\cos\theta,\phi)d\cos\theta d\phi}{\int d\sigma(\cos\theta,\phi)d\cos\theta d\phi}$$

$$\begin{split} \frac{1}{2}(1-3\cos^2\theta)\rangle &= \frac{3}{20}(A_0 - \frac{2}{3}), \quad \langle \sin 2\theta \cos \phi \rangle = \frac{1}{5}A_1, \\ \langle \sin^2\theta \cos 2\phi \rangle &= \frac{1}{10}A_2, \qquad \langle \sin \theta \cos \phi \rangle = \frac{1}{4}A_3, \\ \langle \cos \theta \rangle &= \frac{1}{4}A_4, \qquad \langle \sin^2\theta \sin 2\phi \rangle = \frac{1}{5}A_5, \\ \langle \sin 2\theta \sin \phi \rangle &= \frac{1}{5}A_6, \qquad \langle \sin \theta \sin \phi \rangle = \frac{1}{4}A_7. \end{split}$$

22

Система покоя Коллинза-Сопера

- покоя пополам
- Положительное направление оси z выбирается в сторону вылета W-бозона в лабораторной системе.

• Направление оси z выбирается так, чтобы она делила угол между направлением трехмерных импульсов протонов в системе

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Obs.	Mean	Elec.	PDF	Muon	EW	PS &	Bkg.	Γ_W	MC stat.	Lumi	Recoil	Total	Data	Total
p_T^ℓ 80360.1 8.0 7.7 7.0 6.0 4.7 2.4 2.0 1.9 1.2 0.6 15.5 4.9 1 m_T 80382.2 9.2 14.6 9.8 5.9 10.3 6.0 7.0 2.4 1.8 11.7 24.4 6.7 2.4		[MeV]	Unc.	Unc.	Unc.	Unc.	Ai Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	sys.	stat.	Unc.
m_{m} 803822 02 146 08 50 103 60 70 24 18 117 244 67 2	p_{T}^{ℓ}	80360.1	8.0	7.7	7.0	6.0	4.7	2.4	2.0	1.9	1.2	0.6	15.5	4.9	16.3
$m_{\rm T}$ 80382.2 9.2 14.0 9.8 5.9 10.5 0.0 7.0 2.4 1.8 11.7 24.4 0.7 2	m_{T}	80382.2	9.2	14.6	9.8	5.9	10.3	6.0	7.0	2.4	1.8	11.7	24.4	6.7	25.3

[2] <u>https://doi.org/10.1140/epjc/s10052-017-5475-4</u>

[3] https://cds.cern.ch/record/2853290

Толкачёв Григорий

M_w = 80369.5 ± 6.8 (stat) ± 10.6 (exp.syst.) ± 13.6 (model.syst.) MeV

modelling of lepton measurement and il	Theoretical: understanding of vector boson production and decay
Recoil Bckg. QCD Unc. Unc. Unc.	EW PDF Total χ^2/dof Unc. Unc. Unc. of Comb.
2.9 4.5 8.3	5.5 9.2 18.5 29/27

$m_W = 80360 \pm 5(\text{stat.}) \pm 15(\text{syst.}) = 80360 \pm 16 \text{ MeV.}$

24

Погрешности

Толкачёв Григорий

Погрешности

Толкачёв Григорий

29/06/2023

|y^{|v}|

Результат измерения коэффициентов A_i для комбинации каналов

Результат измерения коэффициентов A_i для комбинации каналов

Толкачёв Григорий

29/06/2023

28

Партонные функции разлчных наборов

Толкачёв Григорий

 $\widehat{\mathcal{O}}_{2}$ 1 $Q^{2} = m_{W}^{2}$

 $\stackrel{\frown}{\partial} 6 \qquad O^2 - m^2$

29/06/2023 + 6 $O^2 = m^2$

CDF Collaboration, doi:10.1103/PhysRevD.73.052002

Сравнение экспериментальной и ПФР погрешностей

- ► Наибольшую погрешность ПФР для предсказаний имеет набор CT18NNLO, а наименьшую NNPDF4.0NNLO.

► для A_4 и σ полная погрешность измерений больше чем погрешность ПФР для предсказаний, однако, является сравнимой

