Изучение возможности восстановления гиперонов в эксперименте ВМ@N

Выполнил студент гр. М21-115:

Барак Р.К.

Руководитель научно-исследовательской работы:

в.н.с. Белоцкий К. М.

Консультант научно-исследовательской работы:

в.н.с. Мерц С. П.

НИЯУ МИФИ, Москва 29/06/2023

Введение

- Столкновения тяжелых релятивистских ионов позволяют нам изучать ядерную материю при экстремальных плотности и температуре.
- При достаточно высоких температуре и плотности энергии формируется так называемая Кварк-глюонная плазма (КГП) [1]:
 - Производство гиперонов.
- Теоретические модели предлагают разные описания [2],[3]:
 - Нужны новые экспериментальные данные для разъяснения.

[1] Kapishin.M, "Studies of baryonic matter at the BM@N experiment (JINR)." Nuclear Physics A 982 (2019) 967–970.[2] J. A. et al Nucl. Phys., vol. A 757, pp. 102–183, 2005.

[3] K. A. et al Nucl. Phys., vol. A 757, pp. 184–283, 2005.

Эксперимент ВМ@N на комплексе NICA

- Столкновения элементарных частиц и ионов с неподвижной мишенью при энергиях до 4 ГэВ на нуклон.
- Изучение свойств плотной барионной материи, образование гиперматерии, странность и адронную фемтоскопию.

Поиск гиперонов в данных эксперимента BM@N с помощью математических алгоритмов.

Задачи

- Моделирование и реконструкция данных для анализа.
- Разработка и реализация алгоритма для восстановления гиперонов.
- Определение источников повышения фона в массовом распределении.
- Исследование влияния источников фона на качество восстановления.
- Исследование зависимости множественности гиперонов от фазового пространства.

Новизна

- Количественный анализ источников возникновения ложных и вторичных треков заряженных частиц.
- Анализ множественности реконструированных гиперонов в фазовом пространстве.

 Для анализа использовались данные, полученные из Монте-Карло генератора DCMSMM [4]. Было смоделировано 100000 событий.

[4] Baznat M., Botvina A., Musulmanbekov G., Toneev V., Zhezher V. Monte-Carlo Generator of Heavy Ion Collisions DCM-SMM, Physics of Particles and Nuclei Letters 17, 3, 303-324 (2020)

Обработка данных

- Проведена реконструкция трэков частиц.
- Разработаны и реализованы математические алгоритмы для поиска траекторий лямбда-гиперонов по каналу распада на протон и отрицательный пи-мезон и короткоживущих нейтральных каонов по каналу распада на положительный и отрицательный пи-мезоны:
 - перебор пар частиц с разными знаками
 - вычисление инвариантной массы
 - наложение ряда геометрических ограничений на параметры каждой пары

Источники ухудшения сигнала

• Размытие пучка

 В наименее реалистичном случае принимается, что пучок точечный. В реальности присутствует размытие пучка в поперечной плоскости, а также небольшой разброс по углу.

• Триггерные детекторы SiMD и BD

 На рождение вторичных частиц и, как следствие, повышение фона в массовом распределении лямбда-гиперонов и короткоживущих нейтральных каонов, может влиять наличие вещества триггерных детекторов, расположенных после мишени до трековых детекторов.

• Наличие материала мишени

 Так как мишень является протяженным объектом, то помимо первичного взаимодействия пучка с мишенью, возникают взаимодействия вторичных частиц с ядрами мишени. Это также может быть источником повышенного фона в массовых спектрах.

Результаты Лямбда

- Ограничения
 - 3.0 < path < 20
 - 0.0 < DCA12 < 0.4
 - 0.0 < DCA0 < 0.2
 - 0.1 < DCA1 < 3.0
 - 0.3 < DCA2 < 3.0

Результаты Лямбда

	Идеальный случай	SiMD, BD, target и размытие пучка	SiMD	BD	Target	Размытие пучка
μ (МэВ)	1115.11±0.04	1115.10±0.05	1115.07±0.05	1115.00±0.04	1115.03±0.04	1115.00±0.05
σ (МэВ)	1.65±0.05	1.63±0.05	2.11±0.04	1.64±0.05	1.58±0.04	1.70±0.05
$\frac{\chi^2}{ndf}$	1.757	1.201	3.465	1.597	1.426	1.340
S	3802±98	3615±103	3851±98	3788±98	3860±101	3583±101
В	2855±53	3522±59	2878±54	2881±54	3133±56	3273±57
$\frac{S}{B}$	1.33±0.04	1.03±0.03	1.34±0.04	1.32±0.04	1.23±0.04	1.10±0.04
Efficiency (%)	3.38±0.09	3.20±0.09	3.43±0.09	3.36±0.09	3.43±0.09	3.36±0.10

- Ограничения
 - 1.0 < path < 20
 - 0.0 < DCA12 < 0.3
 - 0.0 < DCA0 < 0.2
 - 0.2 < DCA1 < 3.0
 - 0.2 < DCA2 < 3.0

	Идеальный случай	SiMD, BD, target и размытие пучка	SiMD	BD	Target	Размытие пучка
μ (МэВ)	496.9±0.2	497.1±0.3	496.5±0.2	496.9±0.2	496.6±0.3	496.6±0.3
σ (МэВ)	3.5±0.2	3.6±0.3	3.9±0.3	3.8±0.3	3.7±0.3	4.1±0.3
$\frac{\chi^2}{ndf}$	0.752	1.172	1.143	1.260	0.902	0.722
S	900±58	803±63	804±58	909±59	791±60	775±61
В	1240±35	1596±40	1286±36	1259±35	1401±37	1463±38
$\frac{S}{B}$	0.73±0.05	0.50±0.04	0.63±0.05	0.72±0.05	0.56±0.05	0.53±0.04
Efficiency (%)	0.94±0.06	0.83±0.07	0.84±0.06	0.94±0.06	0.82±0.06	0.85±0.07

Распределение количества лямбда-гиперонов в фазовом пространстве, основанное на данных полученных с помощью Монте-Карло генератора Распределение количества лямбда-гиперонов в фазовом пространстве, основанное на данных полученных после процесса реконструкции и наложения геометрических ограничений

Распределение количества лямбдагиперонов в фазовом пространстве, основанное на данных полученных с помощью Монте-Карло генератора с уменьшением биннинга Распределение количества лямбдагиперонов в фазовом пространстве, основанное на данных полученных после процесса реконструкции и наложения геометрических ограничений с уменьшением биннинга 15

Распределение количества лямбда-гиперонов в фазовом пространстве основанное на данных полученных после процесса реконструкции, наложения геометрических ограничений и извлечении сигнала

Эффективность восстановления лямбда-гиперонов в фазовом пространстве

Распределение количества короткоживущих нейтральных каонов в фазовом пространстве, основанное на данных полученных с помощью Монте-Карло генератора Распределение количества короткоживущих нейтральных каонов в фазовом пространстве, основанное на данных полученных после процесса реконструкции и наложения геометрических ограничений

Распределение количества короткоживущих нейтральных каонов в фазовом пространстве, основанное на данных полученных с помощью Монте-Карло генератора с уменьшением биннинга Распределение количества короткоживущих нейтральных каонов в фазовом пространстве, основанное на данных полученных после процесса реконструкции и наложения геометрических ограничений с уменьшением биннинга

Распределение количества короткоживущих нейтральных каонов в фазовом пространстве, основанное на данных полученных после процесса реконструкции, наложения геометрических ограничений и выявлении сигнала

Эффективность восстановления короткоживущих нейтральных каонов в фазовом пространстве

Заключение

- Разработаны алгоритмы, с помощью которых было выявлено присутствие лямбда-гиперона и K_S⁰.
- Проведено моделирование и анализ 100000 событий для идеального случая и случая с разными источниками ухудшения сигнала.
- Количественно показано, что размытие пучка вносит наибольший отрицательный вклад в окончательный результат восстановления гиперонов.
- Получена эффективность лямбда-гиперонов и К_S⁰ в фазовом пространстве.

Апробация результатов

- Результаты этой работы были представлены на следующих конференциях:
 - XVII Всероссийская молодежная научно-инновационная школа "МАТЕМАТИКА И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ", г. Саров, 2023
 - 65-я Всероссийская научная конференция МФТИ, г. Долгопрудный, 2023
 - 10-е коллаборационное совещание эксперимента ВМ@N на установке NICA, г. Санкт-Петербург, 2023
 - XII ежегодная конференция молодых ученых и специалистов "Алушта-2023", г. Алушта, 2023

Спасибо за внимание!

- Изучение влияния поворота станций кремния на восстановление странных частиц.
- Проверка алгоритма на экспериментальных данных.

Backup

Armenteros-Podolanski plot

p_t [GeV]

Forward Silicon Detector

Forward Silicon Detector (FSD) is a high-precision coordinate detector of the inner tracking system of the BM@N setup. It consists of a set of silicon modules which are assembled into 4 stations.

GEM detector

layers

signals

Digits

A set of all strips with theirs

- b) Hit reconstruction from "digits":
 - Realistic simulation + digitization
 - RAW experimental data + digitization

3. "Digitization" (forming 'digits' as

signal on the strips)