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Action and stress-energy tensor

We study nonstationary spherically symmetric solutions of the Einstein-
scalar field system with a massless scalar field minimally coupled to
gravity.

We begin with the action

1
S= J<_ES + (d¢,d¢)>,/|g|d4x.
The components of the stress-energy tensor are determined by formula

Tyj = 20;¢0;¢ — (g"™ 0k PO ) gij -



Einstein and Klein-Gordon equations

Rij=3S95 =Ty, 7=0:(/lglg"0;9) =0, g=det(gy),

A configuration will be called stationary if ¢ = ¢ (C), where C is the

radius of the sphere. Otherwise, the configuration will be called
nonstationary.

This allows us to use the coordinate system

(@.C.0,9),

at least locally, for any nonstationary configuration.



Method for constructing nonstationary configurations
of a spherically symmetric scalar field

Characteristic function:
f =—(dcC,dC).
Metric in coordinates (¢, C, 6, ¢) :
szd¢2 + CfpdCde + (Cfe + f — 1dC?
4f(Cfe+f-D- (f¢)

ds? = — — C%(d6? + sin?0dg?).

The behavior of function f(¢, C) makes it possible to interpret the solution
as a black hole, wormhole, or naked singularity.



Method for constructing nonstationary configurations
of a spherically symmetric scalar field
The equation for the characteristic function is equivalent to the Klein-
Gordon equation, which takes the form

1 i
\/ﬁai( lglg aj¢) =0 =
(1= f = féOfp = fecCPf + Cfpefy + (FO?C?* + (BCf = 30)f¢ +
+Af2—6f +2 =0, *)

Coordinate system (t, C, 6, @) :

4C2fdt? dc?
————C?%(d0? + sin?6dp?),
(arccri+r-D-(F)) ()" [

ds? = —

te_ Jo
ty,  2Cf



Classes of metric functions
I f = f(d).

Form of the equation

fr(@)—4f(@)+2=0 =
f(p) = %+ C, e??+C, e729.

Metric in coordinates (¢, C, 0, ¢) :

ds? =
CZ(% +C, e2P+C, e72P)d¢p? + 2C(C, €2?—C, e72?)dCd¢ + (—% + €, e2?+C, e729)d(?
1-16C, C,

— C?%(d#? + sin?0d¢?),

The metric signature ( + - - - ) entails the condition

1_ 16C1 CZ >0 .



Next, we revert to the usual coordinates (t,C,0,9)

1
2]
t=Ce Cie*¢-C,e2¢

+C; e2P4c, e2¢

Schwarzschild asymptotics are possible if the following conditions are met:

f(p) = %+ (o 62‘1’+C2 e 2%=1, C, e2d —C, e—20=( N
1—16C; C, = 0 - degenerate case.
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Classes of metric functions
1. f (¢, C) =1+ C2h(g).

Klein-Gordon equation
3" (@) - 2(h'($))" — 12(h(¢)) = 0 =
h(p) = (cl ezs—ﬁ"‘wc2 8_23_%) .
The exact form of the metric in the coordinates (4, C, 6, 9)

ds? = —g((u C?h(¢))dg? + Ch'($)dgdC + 3h(4)dC?)— C2d02,

A= 12h(¢)(1 + C2h(e)) — C2(h'($))” < 0.



Coordinates (t,C,06,9):

8V3 23
=20 cz(cfeT"’—czz)—eT"’
- 2V3 43
c, eT¢(c1 es %+c, )

€ =1, G =-1, f=1+8c2sh?23g,

1
¢>0C02>———
85h¥¢ ¢ <0
3 1 V3 1

¢~L, C - oo, t = Const, t>= t>1, f=0 & ¢=——arsh|—
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Metric in coordinates (t,C, 0, ¢) :

4C?fdt? dc?
52 = — f > Z—T—Cz(d62+sin29d<p2).
r r r
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’ 2V3
SShT ¢
Graphs of metric functions. t=Const Graphs of metric functions, t=Const
1
04
0.8
02
06 i J |
R
o NN
-02:
02
-04
b T 2 i i 3 0 02 0t 0% 08
C c
— e G




Classes of metric functions
1. f = f(C).
Scalar field equation
—feeC*H + (FOPC?+3C(f — D +4f>—6f+2 =0.

Under the assumption that the scalar field depends on time only
(¢ = t), the metric can be written as

C?dt? dc?
——— —C?(d#? + sin?6dp?),

2:7
=i cR—7 f

A =Cfe=Hf >0.



Direct substitution of the series for the characteristic function into the
Klein-Gordon equation allows us to conclude that there are no
solutions with Schwarshild asymptotics in this case.

Also there are no solutions with de Sitter asymptotics.

Numerical solutions
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Conclusions:

* Scalar field equation in coordinate system (¢, C, 8, @)

(1= f = feOf g — fecCPf + Cfgefy + (fOPC? + BCf = 30)f¢ +
+4f2—6f+2 =0

allows one to obtain both exact and numerical solutions for a massless
scalar field.

* Exact solutions are obtained for a massless scalar field. These solutions
are related to characteristic functions of a special kind. Analysis of
specific exact solutions can help clarify the general features of
nonstationary scalar field configurations.

* Studying the behavior of the characteristic function contributes to a
more correct formulation of the problem of obtaining numerical
nonstationary solutions.



Thank you for attention!



