Nonstationary configurations of a massless scalar field

Ju.V. Tchemarina*, I.M. Potashov, I.A. Shapovalova, and A.N. Tsirulev

Faculty of Mathematics
Tver State University

ICPPA 2020

Action and stress-energy tensor

We study nonstationary spherically symmetric solutions of the Einsteinscalar field system with a massless scalar field minimally coupled to gravity.

We begin with the action

$$S = \int \left(-\frac{1}{2} S + \langle d\phi, d\phi \rangle \right) \sqrt{|g|} d^4 x .$$

The components of the stress-energy tensor are determined by formula

$$T_{ij} = 2\partial_i\phi\partial_j\phi - (g^{km}\partial_k\phi\partial_m\phi)g_{ij} \ .$$

Einstein and Klein-Gordon equations

$$R_{ij} - \frac{1}{2}Sg_{ij} = T_{ij}$$
, $\frac{1}{\sqrt{|g|}}\partial_i(\sqrt{|g|}g^{ij}\partial_j\phi) = 0$, $g = \det(g_{ij})$,

A configuration will be called stationary if $\phi = \phi(\mathcal{C})$, where \mathcal{C} is the radius of the sphere. Otherwise, the configuration will be called nonstationary.

This allows us to use the coordinate system

$$(\phi, C, \theta, \varphi),$$

at least locally, for any nonstationary configuration.

Method for constructing nonstationary configurations of a spherically symmetric scalar field

Characteristic function:

$$f = -\langle dC, dC \rangle$$
.

Metric in coordinates $(\phi, C, \theta, \varphi)$:

$$ds^{2} = -4\frac{C^{2}fd\phi^{2} + Cf'_{\phi}dCd\phi + (Cf'_{C} + f - 1)dC^{2}}{4f(Cf'_{C} + f - 1) - (f'_{\phi})^{2}} - C^{2}(d\theta^{2} + \sin^{2}\theta d\varphi^{2}).$$

The behavior of function $f(\phi, C)$ makes it possible to interpret the solution as a black hole, wormhole, or naked singularity.

Method for constructing nonstationary configurations of a spherically symmetric scalar field

The equation for the characteristic function is equivalent to the Klein-Gordon equation, which takes the form

$$\frac{1}{\sqrt{|g|}} \partial_i \left(\sqrt{|g|} g^{ij} \partial_j \phi \right) = 0 \iff (1 - f - f_C'C) f_{\phi\phi}'' - f_{CC}''C^2 f + C f_{\phi C}'' f_{\phi}' + (f_C')^2 C^2 + (3Cf - 3C) f_C' + +4f^2 - 6f + 2 = 0.$$
 (*)

Coordinate system (t, C, θ, φ) :

$$ds^{2} = -\frac{4C^{2}fdt^{2}}{\left(4f(Cf'_{C} + f - 1) - \left(f'_{\phi}\right)^{2}\right)\left(t'_{\phi}\right)^{2}} - \frac{dC^{2}}{f} - C^{2}(d\theta^{2} + \sin^{2}\theta d\varphi^{2}),$$

$$\frac{t'_{C}}{t'_{\phi}} = \frac{f'_{\phi}}{2Cf}$$

Classes of metric functions

I.
$$f = f(\phi)$$
.

Form of the equation

$$f''(\phi) - 4f(\phi) + 2 = 0 \implies$$

 $f(\phi) = \frac{1}{2} + C_1 e^{2\phi} + C_2 e^{-2\phi}.$

Metric in coordinates $(\phi, C, \theta, \varphi)$:

$$\begin{split} ds^2 &= \\ &= 4 \frac{C^2 (\frac{1}{2} + C_1 \ e^{2\phi} + C_2 \ e^{-2\phi}) d\phi^2 + 2C(C_1 \ e^{2\phi} - C_2 \ e^{-2\phi}) dC d\phi + (-\frac{1}{2} + C_1 \ e^{2\phi} + C_2 \ e^{-2\phi}) dC^2}{1 - 16C_1 \ C_2} \\ &- C^2 (d\theta^2 + \sin^2\theta d\phi^2), \end{split}$$

The metric signature (+ - - -) entails the condition

$$1 - 16C_1 C_2 > 0$$
.

Next, we revert to the usual coordinates (t,C,θ,ϕ)

$$t = Ce^{\int_{-C_1}^{\frac{1}{2} + C_1} e^{2\phi} + C_2 e^{-2\phi}} d\phi.$$

Schwarzschild asymptotics are possible if the following conditions are met:

$$f(\phi) = \frac{1}{2} + C_1 e^{2\phi} + C_2 e^{-2\phi} = 1$$
, $C_1 e^{2\phi} - C_2 e^{-2\phi} = 0$ = $1 - 16C_1 C_2 = 0$ - degenerate case.

Classes of metric functions

II.
$$f(\phi, C) = 1 + C^2 h(\phi)$$
.

Klein-Gordon equation

$$3h''(\phi)h(\phi) - 2(h'(\phi))^{2} - 12(h(\phi))^{2} = 0 \implies$$

$$h(\phi) = \left(C_{1} e^{\frac{2\sqrt{3}}{3}\phi} + C_{2} e^{-\frac{2\sqrt{3}}{3}\phi}\right)^{3}.$$

The exact form of the metric in the coordinates $(\phi, C, \theta, \varphi)$

$$ds^{2} = -\frac{4}{\Delta} \left(\left(1 + C^{2}h(\phi) \right) d\phi^{2} + Ch'(\phi) d\phi dC + 3h(\phi) dC^{2} \right) - C^{2} d\Omega^{2},$$

$$\Delta = 12h(\phi)(1 + C^2h(\phi)) - C^2(h'(\phi))^2 < 0.$$

Coordinates (t,C,θ,ϕ) :

$$t = \frac{2c_1 \ c^2 \left(c_1^2 e^{\frac{8\sqrt{3}}{3}\phi} - c_2^2\right) - e^{\frac{2\sqrt{3}}{3}\phi}}{c_1 \ e^{\frac{2\sqrt{3}}{3}\phi} \left(c_1 \ e^{\frac{4\sqrt{3}}{3}\phi} + c_2\right)} \ .$$

$$C_1 = 1$$
, $C_2 = -1$, $f = 1 + 8C^2 sh^3 \frac{2\sqrt{3}}{3} \phi$,

$$\begin{split} \phi > 0,\,C^2 > \frac{1}{8sh\frac{2\sqrt{3}}{3}\phi} \\ \phi \sim &\frac{\sqrt{3}}{16C^2}, \qquad C \to \infty, \qquad t = Const, \qquad t > \frac{1}{2} \end{split}$$

Metric in coordinates (t, C, θ, φ) :

$$ds^2 = -\frac{4C^2 f dt^2}{\left(4f(Cf_C' + f - 1) - \left(f_\phi'\right)^2\right)\left(t_\phi'\right)^2} - \frac{dC^2}{f} - C^2(d\theta^2 + \sin^2\!\theta d\varphi^2).$$

Classes of metric functions

III.
$$f = f(C)$$
.

Scalar field equation

$$-f_{CC}^{"}C^2f + (f_C^{'})^2C^2 + 3C(f-1)f_C^{'} + 4f^2 - 6f + 2 = 0.$$

Under the assumption that the scalar field depends on time only $(\phi = t)$, the metric can be written as

$$ds^{2} = \frac{C^{2}dt^{2}}{1 - Cf'_{C} - f} - \frac{dC^{2}}{f} - C^{2}(d\theta^{2} + \sin^{2}\theta d\varphi^{2}),$$

$$(1 - Cf'_{C} - f)f > 0.$$

Direct substitution of the series for the characteristic function into the Klein-Gordon equation allows us to conclude that there are no solutions with Schwarshild asymptotics in this case.

Also there are no solutions with de Sitter asymptotics.

Numerical solutions

Conclusions:

• Scalar field equation in coordinate system $(\phi, C, \theta, \varphi)$

$$(1 - f - f_C'C)f_{\phi\phi}'' - f_{CC}''C^2f + Cf_{\phi C}''f_{\phi}' + (f_C')^2C^2 + (3Cf - 3C)f_C' + 4f^2 - 6f + 2 = 0$$

allows one to obtain both exact and numerical solutions for a massless scalar field.

- Exact solutions are obtained for a massless scalar field. These solutions
 are related to characteristic functions of a special kind. Analysis of
 specific exact solutions can help clarify the general features of
 nonstationary scalar field configurations.
- Studying the behavior of the characteristic function contributes to a more correct formulation of the problem of obtaining numerical nonstationary solutions.

Thank you for attention!