From thin to thick domain walls: An example of the ϕ^8 model
Petra A. Blinov1, Vakhid A. Gani2, Aliakbar Moradi Marjaneh3
1Moscow Institute of Physics and Technology (National Research University), Moscow Region, Russia
2Department of Mathematics, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
3Department of Physics, Quahan Branch, Islamic Azad University, Quahan, Iran

Abstract
We study an example of higher-order field-theoretic model with an eighth-degree polynomial potential – the ϕ^8 model. We show that for some certain ratios of constants of the potential the problem of finding kink-type solutions in (1+1)-dimensional space-time reduces to solving algebraic equations. Based on the explicit formulas found for the kink solutions, we show that for certain values of the constants, kink-like solutions with power-law asymptotics arise in the model, describing, in particular, thick domain walls. Objects of this kind could be of interest for modern cosmology.

The ϕ^n model
The Lagrangian:
$$\mathcal{L} = \frac{1}{2} \left(\frac{\partial \phi}{\partial t} \right)^2 - \frac{1}{2} \left(\frac{\partial \phi}{\partial x} \right)^2 - V(\phi)$$

with the potential in the form of eighth degree polynomial
$$V(\phi) = \frac{1}{2} (\alpha^2 - \beta^2)^2 (\phi^2 - \beta^3)^2,$$

where α and β are constants, $0 < \alpha < \beta$.

Algebraic Equations for Kinks

Topological sectors (a, b) and $(-b, -a)$.

An implicit kink solution:
$$x = \frac{1}{2(\beta - \alpha)} \ln \left(\frac{\phi - a}{\phi + a} \right)^{1/n} \left(\frac{b + \phi}{b - \phi} \right)^{1/n}.$$

Denote $b/a = n$ and set $b = 1$, then we get
$$\left(\frac{n \phi - 1}{n \phi + 1} \right)^n \left(\frac{1 + \phi}{1 - \phi} \right) = a_n(x),$$

where
$$a_n(x) = \exp \left[\frac{2(1 - 1/n)}{x} \right].$$

Topological sector $(-a, a)$:
$$\left(\frac{1 + n \phi}{1 - n \phi} \right)^n \left(\frac{1 - \phi}{1 + \phi} \right) = a_n(x),$$

Case $n = 2$

Topological sectors $(-1, -1/2)$, $(-1/2, 1/2)$ and $(1/2, 1)$:
$$\phi_K(x) = \cos \left(\frac{1}{2} \arccos \left[\frac{\tanh \left(\frac{3}{4} x \right)}{\frac{3}{4}} \right] \right),$$

Asymptotics of Kinks and Limit $n \to \infty$

Topological sector $(1/3, 1)$ and symmetrical to it $(-1, -1/3)$:
$$\phi^{(1)}_{K}(x) = \begin{cases} \frac{1}{3} \left[1 - \frac{1}{3} \frac{\sech \left(\frac{8}{9} x \right)}{\sech \left(\frac{8}{9} x \right)} + \frac{2 \tanh \left(\frac{8}{9} x \right)}{\sqrt{1 - \sech^2 \left(\frac{8}{9} x \right)}} \right], & x < 0, \\ \frac{1}{3} \left[1 + \frac{1}{3} \frac{\sech \left(\frac{8}{9} x \right)}{\sech \left(\frac{8}{9} x \right)} + \frac{2 \tanh \left(\frac{8}{9} x \right)}{\sqrt{1 - \sech^2 \left(\frac{8}{9} x \right)}} \right], & x > 0. \end{cases}$$

Topological sector $(-1/3, 1/3)$:
$$\phi^{(2)}_{K}(x) = \begin{cases} \frac{1}{3} \left[1 - \frac{1}{3} \frac{\cosh \left(\frac{8}{9} x \right)}{\cosh \left(\frac{8}{9} x \right)} - \frac{2 \coth \left(\frac{8}{9} x \right)}{\sqrt{1 + \cosh^2 \left(\frac{8}{9} x \right)}} \right], & x < 0, \\ \frac{1}{3} \left[1 + \frac{1}{3} \frac{\cosh \left(\frac{8}{9} x \right)}{\cosh \left(\frac{8}{9} x \right)} - \frac{2 \coth \left(\frac{8}{9} x \right)}{\sqrt{1 + \cosh^2 \left(\frac{8}{9} x \right)}} \right], & x > 0. \end{cases}$$

In the limit $n \to \infty$ (i.e., for $n \to 0$) at $x \to +\infty$ it can be seen that for any finite x the argument of the exponent tends to zero, which corresponds to the transition from exponential to power-law asymptotic behavior of the kink in the topological sector $(0, 1)$.

Conclusion
We have shown that in the case of a ratio of constants $b/a = n$ equal to positive integers, in order to obtain explicit formulas for kinks, it is necessary to solve an algebraic equation of degree $n + 1$. As an example, we have considered cases of $n = 2$ and 3 and obtained analytical formulas for kinks in all topological sectors of the model. For $n = 3$, the expressions for kinks look rather cumbersome; nevertheless, this is a significant step forward in the study of topological solutions of the ϕ^8 model.

The work was partially supported by the Russian Foundation for Basic Research under Grant No. 19-02-00930.