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Abstract

The discrete part of the domain wall ex-
citation spectrum, the profile of which
is described by a kink solution with one
or both power-law asymptotics, can-
not contain levels other than the zero
(translational) mode. Nevertheless, it
can be shown that scenarios are quite
possible when long-lived vibrations will
be excited on the domain wall. This, in
turn, can affect the processes of inter-
action of two or more domain walls.

Why are such models
interesting?

•For example, higher-order
polynomial potentials has kinks
with power-law tails.
•Such models, in turn, may arise in
cosmology, condensed matter, and
so on.

The Model
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Equation of motion:
∂2ϕ

∂t2
− ∂

2ϕ

∂x2 + dV

dϕ
= 0.

The static kink solution ϕK(x) of the
ODE dϕ/dx =

√
2V is topologically

non-trivial, i.e.
lim

x→−∞ϕK(x) < lim
x→+∞ϕK(x).

Power-Law Asymptotics
of Kink

Polynomial or non-polynomial poten-
tial at ϕ ≈ ϕ0:

V (ϕ) = 1
2

(ϕ− ϕ0)
2k v(ϕ0),

where v(ϕ0) > 0 is a constant.
•Power-law asymptotics (k > 1) at
x→ +∞:

ϕK(x) ≈ ϕ0 −
Ak

x1/(k−1),

where
Ak =

(k − 1)
√√√√√v(ϕ0)


1/(1−k)

.

Kink’s Stability Potential

The standard procedure of obtaining the kink’s stability potential includes the
following steps:
• add a small perturbation δϕ(x, t) to the static kink ϕK(x),

ϕ(x, t) = ϕK(x) + δϕ(x, t);
• assume that

δϕ(x, t) = η(x) cos ωt;

• substituting into the equation of motion, we obtain the eigenvalue problem
Ĥη(x) = ω2η(x),

where
Ĥ = − d2

dx2 + U(x);

• the stability potential then reads

U(x) = d2V

dϕ2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ϕK(x)

Note that in many cases the kink ϕK(x) is known only in the implicit form x =
xK(ϕ).

Important Results on the Stability Potential
• 1. The stability potential is volcano-like.
Symmetric or not depending on the symmetry of the kink.
• 2. Asymptotic behavior of the kink’s stability potential is universal.

U(x) ≈ Bk

x2 at x→ +∞,

where
Bk = k (2k − 1)

(k − 1)2 v(ϕ0)
.

• 3. No-go theorem for vibrational modes:
there is only the zero mode in the discrete part of the kink’s excitation
spectrum, which lies on the boundary of the continuous spectrum.
• 4. A way to avoid the above no-go theorem:
In the case of asymmetric kinks with one power-law and one exponential
asymptotics, asymmetry of the stability potential can lead to that closely
placed kink and antikink can form a mutual stability potential in the form of
a potential well, in which, in addition to the zero level, there will also be
levels of the discrete spectrum (vibrational modes).

An Example currently being studied

Consider the polynomial potential

V (ϕ) = 1
2

(1− ϕ)2k (1 + ϕ)2m .

At k = m = 1 this leads to the well-known ϕ4 model with kink solution ϕK(x) =
tanhx.
At m = 1 and k ≥ 2 the kink solution can be found in the implicit form

x = 1
2k

ln 1 + ϕ

1− ϕ
+ k−1∑

n=1
1

n · 2k−n
1

(1− ϕ)n
.

It enables us to investigate properties of this kink and its stability potential. The
results will be reported in the forthcoming publication.

Conclusion

We have studied the asymptotic be-
havior of the kink stability potential,
which defines the spectrum of the kink
small excitations. We were interested
in the case of power-law asymptotics of
the kink. In this case, we found that
the stability potential has volcano-like
shape, approaching to zero at large dis-
tances. Very important result is that
the asymptotic behavior of the kinks
stability potential is universal in the
case of power-law kink’s decay: U(x)
approaches zero as 1/x2. Moreover,
despite the absence of the vibrational
modes in the solitary kink’s excita-
tion spectrum, there could be posi-
tive eigenvalues (vibrational modes) in
the mutual stability potential of the
‘kink+antikink’ system as a whole.
This study is in progress now, final re-
sults will be reported in the near future.
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