QCD corrections for double charmonia production in e^+e^- annihilation

The 5th international conference on particle physics and astrophysics
ICPPA20

A. Berezhnoy1, I. Belov1,2, A. Onishenko1,3, S. Poslavsky4

1SINP MSU, 2Physics department of MSU, 3JINR, 4IHEP Protvino

07.10.2020
J/ψ η_c production study at B-factories

Measurements of $J/ψ \eta_c$, $J/ψ \chi_c$ production near the threshold revealed the failure of theoretic predictions: predicted cross sections were at least 5 times lower.

- A large number of works devoted to perturbative and relativistic corrections and EFT quarkonia models (for example [2],[9],[10],[3],[5])
- Now this process is studied at two loops accuracy [6]

Cross sections for $e^+e^- \rightarrow J/ψ \eta_c$ measured in Belle and BaBar at $\sqrt{s} = 10.6$ GeV. Corrections up to $O(\alpha_S^2 v^2)$ are performed by [6].
\(J/\psi \eta_c \) production at higher energies

Studying charmonia physics in \(e^+e^- \) collisions is encouraged by FCC-ee project with \(\sqrt{s} = 90 \div 400 \text{ GeV} \) and ILC project with \(\sqrt{s} = 250 \text{ GeV} \).

Double charmonia production:

\[
\begin{align*}
 e^+e^- & \rightarrow \eta_c \eta_c \\
 e^+e^- & \rightarrow J\psi \eta_c \\
 e^+e^- & \rightarrow J/\psi J/\psi
\end{align*}
\]

Pair \(B_c \) production:

\[
\begin{align*}
 e^+e^- & \rightarrow \gamma^*,Z_0^* B_c^{(*)} B_c^{(*)} \\
 \gamma \gamma & \rightarrow B_c^{(*)} B_c^{(*)}
\end{align*}
\]

(see works [1] and [4])

- At energies \(\sim M_{Z0} \) annihilation with \(Z_0^* \) exchange may become dominant
- Careful consideration: interference between \(\gamma^* \) and \(Z_0^* \) is needed
- QCD corrections:

\[
|A|^2 = |A_{\gamma}\text{LO}|^2 + |A_{Z}\text{LO}|^2 + 2\text{Re} \left(A_{\gamma}\text{LO}A_{Z}\text{LO}^* \right) + \\
+ 2\text{Re} \left(A_{\gamma}\text{LO}A_{\gamma}\text{NLO}^* \right) + 2\text{Re} \left(A_{Z}\text{LO}A_{Z}\text{NLO}^* \right) + 2\text{Re} \left(A_{Z}\text{LO}A_{\gamma}\text{NLO}^* \right) + \ldots
\]

- No corrections for real gluon radiation
Our approximation

Convolution with the wave functions of the quarkonia:

\[A^{S Jjz} = \int T^{S s \bar{s} \bar{c} c}_{c \bar{c} \bar{c} c} (p_i, k(q_1), k(q_2)) \cdot \left(\Psi^L_{c \bar{c}}(q_1) \Psi^L_{c \bar{c}}(q_2) \right)^* \cdot C^{J \bar{s} \bar{j} l} \frac{dq_1}{(2\pi)^3} \frac{dq_2}{(2\pi)^3} \]

For unpolarized \(S \)-wave states:

\[A = \frac{1}{4\pi} R_{J/\psi}(0) R_{\eta_c}(0) \cdot T_{c \bar{c} \bar{c} c}(p_i) \bigg|_{q_1,2=0} \]

Projection onto the bound states:

\[\Pi_{J/\psi}(P, m) = \frac{\hat{P} - m}{2\sqrt{2}} \frac{1}{\sqrt{3}} \gamma^\mu \varepsilon_{J/\psi}^\mu \times \frac{1}{\sqrt{3}} \]
\[\Pi_{\eta_c}(Q, m) = \frac{\hat{Q} - m}{2\sqrt{2}} \gamma^5 \times \frac{1}{\sqrt{3}} \]

- Colour singlet states
- No internal motion: \(\delta \)-approximation
- Velocities of quarks in the quarkonium are directly fixed equal
Production of $c\bar{c}c\bar{c}$ in Z_0 decay

Some sample diagrams at NLO.

FeynArts: analytic expressions for 4 + 86 diagrams

FeynArts
Generation and visualization of feynman diagrams
Computation strategy

ToolChain:

FeynArts → FeynCalc (FCFormLink, TIDL) → Apart → FIRE → X-package

- **FeynCalc**: algebraic calculations with Dirac and colour matrices
- **FeynCalcFormLink**: taking traces through FORM, significantly gains the time
- **TIDL library (within FC)**: Passarino-Veltman reduction, decomposition of tensor expressions with loop momentum \((k_\mu, k_\mu k_\nu, k_\mu \varepsilon_\mu \ldots)\); only \(k^2\) in numerator afterwards
- **Apart function**: partial fractioning for IR-divergent integrals
- **FIRE**: complete reduction to master integrals
- **X-package**: analytical evaluation of master integrals \((A_0, B_0, C_0\) integrals in our case)
Expression for box diagram (Pic. a) simplified to master integrals.

- Triangle diagrams do not contribute to $\gamma^* \to J/\psi \eta_c$ process.
Regularization and renormalization technique

CDR regularization scheme:

\[D = 4 - 2\varepsilon \quad \text{for all momenta (loop and external)} \]

\[\{ \gamma^\mu, \gamma^\nu \} = 2g^{\mu\nu}, \ g_{\mu\nu}g^{\mu\nu} = D \]

\[\gamma^5 \] interpretation:

Traces with an odd number of \(\gamma^5 \) are left with one \(\gamma^5 \) to the right and

\[\gamma^5 = \frac{-i}{24} \varepsilon_{\alpha\beta\sigma\rho} \gamma^\alpha \gamma^\beta \gamma^\sigma \gamma^\rho, \]

where \(\varepsilon_{\alpha\beta\sigma\rho} \) is either 4-dim or \(D \)-dim

"On shell" scheme for mass and spinors renormalization,

\(\overline{MS} \) scheme for coupling constant:

\[Z_{m}^{OS} = 1 - \frac{\alpha_s}{4\pi} C_F C_\varepsilon \left[\frac{3}{\varepsilon_{UV}} + 4 \right] + O(\alpha_s^2), \]

\[Z_{2}^{OS} = 1 - \frac{\alpha_s}{4\pi} C_F C_\varepsilon \left[\frac{1}{\varepsilon_{UV}} + \frac{2}{\varepsilon_{IR}} + 4 \right] + O(\alpha_s^2), \]

\[\overline{Z}_{g}^{MS} = 1 - \frac{\beta_0}{2} \frac{\alpha_s}{4\pi} \left[\frac{1}{\varepsilon_{UV}} - \gamma_E + \ln(4\pi) \right] + O(\alpha_s^2), \]

\[A^{CT} = Z_{2}^{2} A^{LO} \bigg|_{m \rightarrow Z_{m} m, g_s \rightarrow Z_{g} g_s} \]

- Automatic tools do not distinguish \(\varepsilon_{IR} \) and \(\varepsilon_{UV} \)
- Singular parts carry poles \(\sim 1/\varepsilon \) only
Technical features and cross-checks

- Triangle diagrams are relevant only for Z_0^* case (axial-vector structure).

- Amplitude terms $\sim \frac{1}{D-4}$ arising after FIRE are cancelled with each other — no necessity to include extra terms $\sim O(\varepsilon)$ in A_0, B_0 expansion (comp. to [1]).

- For NLO Z_0^* contribution no matter whether γ^5 is taken with $\varepsilon_{\alpha\beta\sigma\rho}$ as D-dim or 4-dim — the renormalized amplitudes coincide.

Cross-checks already done:

- $\sigma_{LO}^\gamma (J/\psi \eta_c)$ with γ^* exchange is fixed.

- $\sigma_{LO} (J/\psi \eta_c)$ reproduces analytically $\sigma_{LO} (B_c^* B_c)$ in the limit $m_b \to m_c, \ e_b \to e_c = +\frac{2}{3}$ (see [7] as well).

- $\sigma_{NLO} (B_c^* B_c)$ calculation is reproduced and checked numerically; proceeding from this code $\sigma_{NLO} (J/\psi \eta_c)$ is obtained.
Near the threshold:
\[\sqrt{s_{max}} = \sqrt{5.5} \ m \approx 6 \div 7 \ \text{GeV} \]

At high energies:
\[\sigma_{LO} \sim 1/s^3 \]
\[\sigma_{NLO} \sim 1/s^3 \]
Preliminary results: cross sections

\[\sigma(e^+e^- \rightarrow J/\psi \eta_c), \text{ pb} \]
Starting from $\sqrt{s} \approx 60$ GeV:

$$\frac{\sigma_{NLO}}{\sigma_{LO}} = 1.6 ÷ 1.8 = \text{const},$$

however

$$\frac{\sigma_{NLO}^\gamma}{\sigma_{LO}^\gamma} \neq \text{const},$$

since $\sigma_{LO}^\gamma \sim 1/s^4$ and

$$\mathcal{O}(1/s^4) < \sigma_{NLO}^\gamma < \mathcal{O}(1/s^3)$$
Preliminary results: angular distributions

\[\mu = \sqrt{s} = \frac{M_Z}{2} \]

\[\mu = \sqrt{s} = \frac{2M_Z}{3} \]

\[\cos(\theta) \frac{d\sigma}{d\cos(\theta)}, \text{pb} \]

\[\mu = \sqrt{s} = \frac{M_Z}{2} \]

\[\mu = \sqrt{s} = \frac{2M_Z}{3} \]

\[\langle \cos \theta \rangle, \text{GeV} \]
Conclusions

• Calculation of the process $e^+e^- \xrightarrow{\gamma^*, Z_0^*} B_c^* B_c$ is reproduced at next-to-leading order precision

• QCD corrections $O(\alpha_S^3)$ for associative $J/\psi \eta_c$ production in e^+e^- annihilation are presented; interference between virtual γ and Z_0 is considered

• At energies $\sim M_{Z_0}$ cross sections are enhanced as $\sigma_{NLO} \approx 1.7 \sigma_{LO}$

• Cross-checks to do:
 fix σ_{NLO}^{γ} contribution comparing with work [5] diagram by diagram, compare $\Gamma (Z_0 \rightarrow J/\psi \eta_c)$ with work [8]

Upon the code for associative production

\[
\begin{align*}
\left\{ \begin{array}{c}
 e^+e^- & \xrightarrow{Z_0^*} J/\psi \ J/\psi \\
 e^+e^- & \xrightarrow{\eta_c} \eta_c \ \eta_c
\end{array} \right.
\end{align*}
\]

is refined we proceed with publication.
Thank you for attention!

The work was supported by foundation RFBR, grant № 20-02-00154 A.
Next-to-leading order QCD corrections to paired B_c production in e^+e^- annihilation.

Eric Braaten and Jungil Lee.
Exclusive Double Charmonium Production from e^+e^- Annihilation into a Virtual Photon.

V.V. Braguta, A.K. Likhoded, and A.V. Luchinsky.
The Processes $e^+ e^- \rightarrow J/\psi(\chi(c0)), \Psi(2S)(\chi(c0))$ at $s^{**}(1/2) = 10.6$-GeV in the framework of light cone formalism.

Zi-Qiang Chen, Hao Yang, and Cong-Feng Qiao.
NLO QCD corrections to B_c-pair production in photon-photon collision.

Hai-Rong Dong, Feng Feng, and Yu Jia.
$O(\alpha_s v^2)$ correction to $e^+e^- \rightarrow J/\psi + \eta_c$ at B factories.

Next-to-next-to-leading-order QCD corrections to $e^+e^- \rightarrow J/\psi + \eta_c$ at B factories.
1 2019.
V. V. Kiselev.
Exclusive production of heavy meson pairs in e+ e- annihilation.

A.K. Likhoded and A.V. Luchinsky.
Double Charmonia Production in Exclusive Z Boson Decays.

Kui-Yong Liu, Zhi-Guo He, and Kuang-Ta Chao.
Problems of double charm production in e+ e- annihilation at $s^{(1/2)} = 10.6$-GeV.

Yu-Jie Zhang, Ying-jia Gao, and Kuang-Ta Chao.
Next-to-leading order QCD correction to $e^+ e^- \rightarrow J / \psi + \eta(c)$ at $s^{(1/2)} = 10.6$-GeV.