

Vector mesons spectrum in a medium with a chiral imbalance induced by the vacuum of fermions

V. N. Kovalenko, A.A. Andrianov & V.A. Andrianov

Saint Petersburg State University

The 5th international conference on particle physics and astrophysics 5-9 October 2020 Online

1

CP violation in QCD

Vafa-Witten theorem: vector-like global symmetries such as parity, charge conjugation, isospin and baryon number in vector-like gauge theories like QCD cannot be spontaneously broken while the θ angle is zero However this theorem does not apply to dense QCD matter where the partition function is not any more positive definite due to the presence of a highly non-trivial fermion determinant. In addition, out-of-equilibrium symmetry-breaking effects driven by finite temperatures are not forbidden by the Vafa-Witten theorem. Lorentz–non-invariant P -odd operators are allowed to have non-zero expec-

tation values at finite density $\mu > 0$ and finite temperature if the system is out of Equilibrium.

 P – and CP – odd bubbles may appear in a finite volume due to large topological fluctuations in a hot medium

$$\begin{split} \mathcal{L}_{\text{QCD}} &= -\frac{1}{4} G^{\mu\nu,a} G^a_{\mu\nu} + \bar{q} (i\gamma^{\mu} D_{\mu} - m) q, \\ D_{\mu} &= \partial_{\mu} - ig G^a_{\mu} \lambda^a, \quad G^a_{\mu\nu} = \partial_{\mu} G^a_{\nu} - \partial_{\nu} G^a_{\mu} + g f^{abc} G^b_{\mu} G^c_{\nu} \qquad \theta \lesssim 10^{-9}. \\ \theta\text{-term} \qquad \Delta \mathcal{L}_{\theta} &= \theta \frac{g^2}{16\pi^2} \text{Tr} \left(G^{\mu\nu} \widetilde{G}_{\mu\nu} \right) \end{split}$$

CP violation in QCD

In QCD topologically non-trivial configurations of gauge fields can exist (instantons)

Gauge field configurations can be characterized by an integer topological (invariant) charge

$$T_5 = \frac{g^2}{16\pi^2} \int_{t_i}^{t_f} dt \int_{\text{vol.}} d^3 x \operatorname{Tr} \left(G^{\mu\nu} \widetilde{G}_{\mu\nu} \right) \in \mathbb{Z}$$

$$\langle \Delta T_5 \rangle \neq 0$$
 for $\Delta t \simeq \tau_{\text{fireball}} \simeq 5 \div 10 \text{ fm/c};$

Topological fluctuations as a source for parity breaking. Quasi-equilibrium treatment

The local partial conservation of the axial current relation is afflicted with the gluon anomaly

$$\partial^{\mu} J_{5,\mu} - 2i\bar{q}\hat{m}_{q}\gamma_{5}q = \frac{N_{f}g^{2}}{8\pi^{2}}\operatorname{Tr}\left(G^{\mu\nu}\widetilde{G}_{\mu\nu}\right),$$

$$K_{\mu} = \frac{g^{2}}{2}\epsilon_{\mu\nu\rho\sigma}\operatorname{Tr}\left(G^{\nu}\partial^{\rho}G^{\sigma} - i\frac{2}{3}gG^{\nu}G^{\rho}G^{\sigma}\right), \qquad \partial_{\mu}K^{\mu} = \frac{g^{2}}{4}\operatorname{Tr}\left(G^{\mu\nu}\widetilde{G}_{\mu\nu}\right)$$

$$T_{5} = \frac{g^{2}}{16\pi^{2}}\int_{t_{s}}^{t_{f}}dt\int_{\mathrm{vol.}}d^{3}x\operatorname{Tr}\left(G^{\mu\nu}\widetilde{G}_{\mu\nu}\right) \in \mathbb{Z},$$

$$\frac{d}{dt}(Q_{5}^{q} - 2N_{f}T_{5}) \simeq 2i\int_{\mathrm{vol.}}d^{3}x\,\bar{q}\hat{m}_{q}\gamma_{5}q, \qquad Q_{5}^{q} = \int_{\mathrm{vol.}}d^{3}x\,\bar{q}\gamma_{0}\gamma_{5}q.$$

$$\langle T_{5} \rangle = \frac{1}{2N_{f}}\langle Q_{5}^{q} \rangle \qquad \Longleftrightarrow \qquad \mu_{5} = \frac{1}{2N_{f}}\mu_{\theta}.$$

Vector Meson Dominance approach to local parity breaking

Quark loops appearing in the vacuum polarization of the photon can be described exclusively by vector mesons

VMD bosonization

With this definition the matrix element can be expressed as

$$\langle 0|j_{\mu}^{\rm em}|V\rangle = \frac{M_V^2}{g_V}\epsilon_{\mu}^{(V)} \quad \text{where } \epsilon_{\mu}^{(V)} \text{ is a polarization vector} \\ g_{\omega} \simeq g_{\rho} \equiv g \simeq 6 < g_{\phi} \simeq 7.8 \text{ and } M_V^2 = 2g_V^2 f_{\pi}^2.$$

Alternative description of VMD with a mixing of vector mesons with photons in the mass term

Quark-meson interactions are described

$$\mathcal{L}_{\rm int} = \bar{q}\gamma_{\mu}V^{\mu}q; \quad V_{\mu} \equiv -eA_{\mu}Q + \frac{1}{2}g_{\omega}\omega_{\mu}\mathbf{I}_{q} + \frac{1}{2}g_{\rho}\rho_{\mu}\lambda_{3} + \frac{1}{\sqrt{2}}g_{\phi}\phi_{\mu}\mathbf{I}_{s},$$

where $Q = \frac{\lambda_3}{2} + \frac{1}{6}\mathbf{I}_q - \frac{1}{3}\mathbf{I}_s$ λ_3 is the corresponding Gell-Mann matrix the Maxwell and mass terms of the VMD lagrangian

$$\mathcal{L}_{\rm kin} = -\frac{1}{4} \left(F_{\mu\nu} F^{\mu\nu} + \omega_{\mu\nu} \omega^{\mu\nu} + \rho_{\mu\nu} \rho^{\mu\nu} + \phi_{\mu\nu} \phi^{\mu\nu} \right) + \frac{1}{2} V_{\mu,a} \hat{m}_{ab}^2 V_b^{\mu}, \quad \text{where } (V_{\mu,a}) \equiv \left(A_{\mu}, \, \omega_{\mu}, \, \rho_{\mu}^0 \equiv \rho_{\mu}, \, \phi_{\mu} \right)$$

$$\hat{m}^2 = m_V^2 \begin{pmatrix} \frac{4e^2}{3g^2} & -\frac{e}{3g} & -\frac{e}{g} & \frac{\sqrt{2}eg_{\phi}}{3g^2} \\ -\frac{e}{3g} & 1 & 0 & 0 \\ -\frac{e}{g} & 0 & 1 & 0 \\ \frac{\sqrt{2}eg_{\phi}}{3g^2} & 0 & 0 & \frac{g_{\phi}^2}{g^2} \end{pmatrix}, \quad \det\left(\hat{m}^2\right) = 0, \qquad \text{and } m_V^2 \equiv m_{\rho}^2 = 2g_{\rho}^2 f_{\pi}^2 \simeq m_{\omega}^2.$$

Constant axial-vector background in QED theory

J. Alfaro, A. A. Andrianov, M. Cambiaso, P. Giacconi and R. Soldati, Phys. Lett. B 639, 586 (2006) [arXiv:hep-th/0604164].

constant axial-vector appears

$$b_{\mu} = \langle B_{\mu} \rangle = \langle \partial_{\mu} \theta \rangle$$

$$\mathcal{L}_{\text{eff}} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} \left(1 + \frac{2\alpha b^2}{3\pi m^2} \right) + \frac{\alpha b^2}{3\pi} A^{\mu} A_{\mu} + \frac{\alpha}{3\pi m^2} b_{\nu} b^{\rho} F^{\nu\lambda} F_{\rho\lambda} - \frac{\alpha}{2\pi} b_{\lambda} A_{\mu} \epsilon^{\lambda\mu\rho\sigma} F_{\rho\sigma} = -\frac{1}{4} (1+\varepsilon) F^{\mu\nu} F_{\mu\nu} + \frac{1}{2} \varepsilon m^2 A^{\mu} A_{\mu} + \varepsilon \frac{b^{\lambda} b^{\nu}}{2b^2} F_{\lambda\rho} F_{\nu}{}^{\rho} - \frac{\alpha}{\pi} b_{\mu} A_{\nu} \widetilde{F}^{\mu\nu} \qquad \left(\varepsilon = \frac{2\alpha b^2}{3\pi m^2} \right) .$$

Effective LIV Lagranginan for VDM fields

The VDM Lagrangian in the SU(2) flavor sector reads:

$$\mathcal{L}_{\rm int} = \bar{q}\gamma_{\mu}V^{\mu}q$$
$$V_{\mu} \equiv -eA_{\mu}Q + \frac{1}{2}g_{\omega}\omega_{\mu}\mathbf{I}_{q} + \frac{1}{2}g_{\rho}\rho_{\mu}\lambda_{3}$$

where $Q = \frac{\lambda_3}{2} + \frac{1}{6}\mathbf{I}_q$, $g_{\omega} \simeq g_{\rho} \equiv g \simeq 6$; \mathbf{I}_q is the identity matrix in isospin space and λ_3 corresponding Gell-Mann matrix. The Maxwell and mass terms are

$$\mathcal{L}_{\rm kin} = -\frac{1}{4} \left(F_{\mu\nu} F^{\mu\nu} + \omega_{\mu\nu} \omega^{\mu\nu} + \rho_{\mu\nu} \rho^{\mu\nu} \right) + \frac{1}{2} V_{\mu,a} m_{ab}^2 V_b^\mu$$
$$m_{ab}^2 = m_V^2 \left(\begin{array}{cc} \frac{10e^2}{9g^2} & -\frac{e}{3g} & -\frac{e}{g} \\ -\frac{e}{3g} & 1 & 0 \\ -\frac{e}{g} & 0 & 1 \end{array} \right), \quad \det\left(m_{ab}^2\right) = 0$$

where $(V_{\mu,a}) \equiv (A_{\mu}, \omega_{\mu}, \rho_{\mu}^0 \equiv \rho_{\mu})$ and $m_V^2 = m_{\rho}^2, g_{\rho} \simeq g_{\omega} \equiv g \simeq 6$ [3].

Effective LIV Lagranginan for VDM fields

Let us replace
$$A_{\mu}$$
 by V_{μ} :
 $\mathcal{L}_{eff} = \mathcal{L}_{kin} - \frac{1}{4} \varepsilon V_{\mu\nu} \varepsilon V^{\mu\nu} + \frac{1}{2} \varepsilon m^2 V_{\nu} V^{\nu} + \varepsilon \frac{b^{\lambda} b^{\nu}}{2b^2} V_{\lambda\rho} V_{\nu}^{\rho} - \frac{N_c}{8\pi^2} b_{\mu} V_{\nu} \epsilon^{\mu\nu\lambda\nu} V_{\lambda\nu}$
where

$$\varepsilon = \frac{b^2 N_c}{6\pi^2 m}$$
 and $V_{\mu\nu} = \partial_{\mu} V_{\nu} - \partial_{\nu} V_{\mu}$

Trace over isospin matrices is assumed.

For the massive fremion mass we use m as a dynamical quark mass. As an intermediate result,

$$\mathcal{L}_{\text{eff}} = -\frac{F_{\mu\nu}F^{\mu\nu}}{4} - \frac{\omega_{\mu\nu}\omega^{\mu\nu}}{4} - \frac{\rho_{\mu\nu}\rho^{\mu\nu}}{4} + \frac{5m_V^2 e^2 A_\mu A^\mu}{9g^2} - \frac{m_V^2 e A^\mu \omega_\mu}{3g} - \frac{m_V^2 e A^\mu \rho_\mu}{g} + \frac{b^2 N_c V^\nu V_\nu}{24\pi^2 m^2} - \frac{N_c \epsilon_{\delta\gamma\mu\nu} b^\mu V^\nu V^{\delta\gamma}}{8\pi^2} + \frac{V_{\gamma\lambda} N_c V_\mu^\lambda b^\gamma b^\mu}{12\pi^2 m^2} + \frac{1}{2}m_V^2 \omega_\mu \omega^\mu + \frac{1}{2}m_V^2 \rho_\mu \rho^\mu$$

10

Orthogonal transformation in the space of three vector mesons

Let us diagonalize the vector meson mass quadratic from. The LIV-terms will also be diagonalized

$$U = \begin{pmatrix} \frac{3g}{\sqrt{\frac{9g^2}{e^2} + 10e}} & -\frac{10e}{\sqrt{\frac{100e^2}{g^2} + 90g}} & 0\\ \frac{1}{\sqrt{\frac{9g^2}{e^2} + 10}} & \frac{3}{\sqrt{\frac{100e^2}{g^2} + 90}} & -\frac{3\sqrt{10}}{10}\\ \frac{3}{\sqrt{\frac{9g^2}{e^2} + 10}} & \frac{9}{\sqrt{\frac{100e^2}{g^2} + 90}} & \frac{\sqrt{10}}{10} \end{pmatrix}$$

mass matrix eignvalues

$$0, \left(1 + \frac{10e^2}{9g^2}\right)m_V, m_V$$

correspond to masses of photon, ω and ρ mesons

new vector vield V'^{μ} so that $V_a^{\mu} = U_{ab}V_b'^{\mu}$.

Compact form of vector meson Lagrangian

Resulting Lagrangian

$$\begin{aligned} \mathcal{L}_{\text{eff}} &= -\frac{F_{\mu\nu}F^{\mu\nu}}{4} + \left(-\frac{1}{4} - \frac{5b^2N_ce^2}{216\pi^2m^2} - \frac{g^2b^2N_c}{48\pi^2m^2} \right) \omega^{\delta\gamma}\omega_{\delta\gamma} + \left(-\frac{1}{4} - \frac{g^2b^2N_c}{48\pi^2m^2} \right) \rho^{\delta\gamma}\rho_{\delta\gamma} \\ &+ \left(\frac{1}{2}m_V^2 + \frac{5e^2m_V^2}{9g^2} + \frac{5N_cb^2e^2}{108\pi^2} + \frac{g^2b^2N_c}{24\pi^2} \right) \omega^{\mu}\omega_{\mu} + \left(\frac{1}{2}m_V^2 + \frac{g^2b^2N_c}{24\pi^2} \right) \rho^{\mu}\rho_{\mu} \\ &+ \left(\frac{5N_cb^{\delta}b^{\lambda}e^2}{108\pi^2m^2} + \frac{g^2N_cb^{\delta}b^{\lambda}}{24\pi^2m^2} \right) \omega_{\delta\gamma}\omega_{\lambda}^{\gamma} + \frac{g^2N_cb^{\delta}b^{\lambda}\rho_{\delta\gamma}\rho_{\lambda}^{\gamma}}{24\pi^2m^2} \\ &+ \left(-\frac{5N_ce^2b^{\lambda}\epsilon_{\delta\gamma\lambda\mu}}{72\pi^2} - \frac{g^2N_c\epsilon_{\delta\gamma\lambda\mu}b^{\lambda}}{16\pi^2} \right) \omega^{\mu}\omega^{\delta\gamma} - \frac{g^2N_c\epsilon_{\delta\gamma\lambda\mu}b^{\lambda}\rho^{\mu}\rho^{\delta\gamma}}{16\pi^2} \end{aligned}$$

Vector meson can be rewritten to

$$\begin{aligned} \mathcal{L}_{V} &= -\frac{1}{4} \left(1 + \xi \frac{b^{2}}{m^{2}} \right) V^{\mu\nu} V_{\mu\nu} + \xi \frac{b_{\nu} b^{\rho}}{2m^{2}} V^{\nu\lambda} V_{\rho\lambda} \quad \xi = \begin{cases} \xi_{\omega} &= \frac{g^{2} N_{c}}{12\pi^{2}} + \frac{5e^{2} N_{c}}{54\pi^{2}} \\ \xi_{\rho} &= \frac{g^{2} N_{c}}{12\pi^{2}} \end{cases} \zeta = \begin{cases} \zeta_{\omega} &= \frac{g^{2} N_{c}}{4\pi^{2}} + \frac{5e^{2} N_{c}}{18\pi^{2}} \\ \zeta_{\rho} &= \frac{g^{2} N_{c}}{4\pi^{2}} \end{cases} \\ \zeta_{\rho} &= \frac{g^{2} N_{c}}{4\pi^{2}} \end{cases} \\ \pi^{2} &= \begin{cases} \bar{m}_{\omega}^{2} = m_{V}^{2} + \frac{10e^{2}}{9g^{2}} m_{V}^{2} + \frac{g^{2} N_{c}}{12\pi^{2}} b^{2} + \frac{5N_{c}e^{2}}{54} b^{2} \\ \bar{m}_{\rho}^{2} &= m_{V}^{2} + \frac{g^{2} N_{c}}{12\pi^{2}} b^{2} \end{cases} \end{aligned}$$

Dispersion relations for ρ and ω mesons

The modified Maxwell's equations read

$$\left(1 + \xi \frac{b^2}{m^2}\right) \partial_\lambda V^{\lambda\nu} - \frac{\xi}{m^2} \left(b^\rho b_\lambda \partial_\rho V^{\lambda\nu} - b^\nu b_\lambda \partial_\rho V^{\lambda\rho}\right) + \bar{m}^2 V^\nu - \zeta b_\lambda \tilde{V}^{\nu\lambda} = 0$$

$$\partial_\nu V^\nu = 0$$

In the momentum representation:

$$K^{v\sigma}A_{\sigma}(k) = 0, \quad k^{\sigma}A_{\sigma}(k) = 0$$
$$K^{v\sigma} \equiv \left(k^{2} - \bar{m}^{2}\right)g^{v\sigma} - k^{v}k^{\sigma} - \xi\left(D/m^{2}\right)e^{v\sigma} + i\zeta\epsilon^{v\lambda\rho\sigma}b_{\lambda}k_{\rho}$$

$$\mathbf{D} \equiv (b \cdot k)^2 - b^2 k^2$$

and the projector onto the two-dimensional hyperplane orthogonal to by and ky $\mathrm{e}^{v\sigma} \equiv g^{v\sigma} - \tfrac{b\cdot k}{\mathrm{D}} \left(b^v k^\sigma + b^\sigma k^v \right) + \tfrac{k^2}{\mathrm{D}} b^v b^\sigma + \tfrac{b^2}{\mathrm{D}} k^v k^\sigma$

Dispersion relations for ρ and ω mesons

Longitudinal polarization remains unchaged. For the doubly transversal modes dispersion relations reads

$$\left\{k^2 - \frac{\xi}{m^2}\left[(b \cdot k)^2 - b^2 k^2\right] - \bar{m}^2\right\}^2 - \zeta^2\left[(b \cdot k)^2 - b^2 k^2\right] = 0$$

Then, for a genuine time-lik $b_{\mu} = (b_0, 0, 0, 0)$

$$\left\{k_0^2 - |\vec{k}|^2 - \frac{\xi}{m^2} \left[b_0^2 k_0^2 - b_0^2 (k_0^2 - |\vec{k}|^2)\right] - \bar{m}^2\right\}^2 - \zeta^2 \left[b_0^2 k_0^2 - b_0^2 (k_0^2 - |\vec{k}|^2)\right] = 0$$

With the solution $k_0^2 - |\vec{k}|^2 \equiv m *^2 = \bar{m}^2 \pm \zeta b_0 |\vec{k}| + \xi b_0^2 |\vec{k}|^2 / m^2$

Numerical estimations

We use:

$$N_c = 3$$
, $g = 6$, $e^2 = 4\pi \cdot 1/137$, $m = 0.3 \text{GeV}$ [4], $m_V = m_\rho = 0.7755 \text{GeV}$

Then

$$\xi = \begin{cases} \xi_{\omega} = 0.9119 + 0.0026 = 0.9145 \\ \xi_{\rho} = 0.9119 \end{cases} \zeta = \begin{cases} \zeta_{\omega} = 2.7435 \\ \zeta_{\rho} = 2.7357 \\ \bar{m}^2 = \begin{cases} \bar{m}^2_{\omega} = (0.7766 \text{GeV})^2 + 0.9145 \ b^2 \\ \bar{m}^2_{\rho} = (0.7755 \text{GeV})^2 + 0.9119 \ b^2 \end{cases}$$

The mass spectrum of vector mesons in the presense of the chiral imbalance induced by a fermionic vacuum for the transverse polarisations is

$$m_{\omega}^{*2} = (0.7766 \text{GeV})^2 + 0.9145 \ b^2 \pm 2.7435 \ b \ |\vec{k}| + 10.16 (\text{GeV}^{-2}) \ b^2 \ |\vec{k}|^2$$
$$m_{\rho}^{*2} = (0.7755 \text{GeV})^2 + 0.9119 \ b^2 \pm 2.7357 \ b \ |\vec{k}| + 10.13 (\text{GeV}^{-2}) \ b^2 \ |\vec{k}|^2 \ ^{15}$$

Numerical estimations

Applying the relation $\zeta b_0 = N_c g^2 \mu_5 / 8\pi^2$ $b_0 \simeq 0.5 \mu_5$

Vector meson spectrum as a function of momentum

16

Numerical estimations

Vector meson spectrum as a function of chiral chemical potential

Summary and outline

The chiral imbalance can be considered as a time-like axial-vector bµ coupled to a fermion field with its zero component associated with µ5.

The properties of light vector mesons in the presence of LPB in a fireball, the vector-meson dominance model is applied in the lightest SU(2) sector.

We obtained to the vector ρ and ω meson mass spectrum as a function of momentum and chiral chemical potential μ 5.

We showed that in addition to the Chern–Simons term, splitting the transverse polarisations of the mesons, there is an additional contribution that becomes important at momentum and μ 5 around a few hundred MeV.

The polarisation slpitting can be detected experimentally using di-lepton decay chanel of vector mesons, using angular analysis.

The developed formalism can be coupled to the thermal or blast-wave-like model to provide the predictions of ρ and ω spectral functions.

It also can be applied in more detailed relativistic hydrodynamic models

References

[1] J. Alfaro, A. Andrianov, M. Cambiaso, P. Giacconi and R. Soldati, Phys. Lett. B 639, 586-590 (2006), arXiv:hep-th/0604164 [hep-th].

[2] J. Alfaro, A. Andrianov, M. Cambiaso, P. Giacconi and R. Soldati, Int. J. Mod. Phys. A 25, 3271-3306 (2010), arXiv:0904.3557 [hep-th].

[3] A. Andrianov, V. Andrianov, D. Espriu and X. Planells, Phys. Lett. B 710, 230-235 (2012), arXiv:1201.3485 [hep-ph].

[4] X. Planells, PhD thesis, November 2014, arXiv:1411.3283 [hep-ph]