

Status of the Phase-2 Tracker Upgrade of the CMS experiment at the HL-LHC

Luigi Calligaris (SPRACE/UNESP) on behalf of the CMS Collaboration

ICPPA2020, 07/10/2020

The Phase-2 tracker upgrade

- Future HL-LHC upgrade (5-7 10^{34} cm⁻²s⁻¹)
 - Pile-up increase from 25 to 200 (x8)
 - \circ Larger number of tracks \longrightarrow increase granularity
 - $\circ~$ Larger hit & trigger rates $~\rightarrow$ increase readout rates
 - $\circ~$ More selective L1 trigger $~\rightarrow$ Track information at L1
 - Lifetime radiation dose from 300 to 3000 fb⁻¹ (x10)
 - Improved radiation hardening of detectors
 - Easy to install, repair, replace
 - Reduce material budget
- Entirely new Phase-2 tracker
 - Inner (IT) and outer (OT) tracker
 - Back-end systems
 - Read-out and control
 - Power supplies
 - OT L1 Track finder

LHC high pile-up test fill in 2016 (<PU> = 80)

Inner Tracker

- Big detector (1.95 billion channels, 4350 modules)
 - Challenge for read-out and calibration
- IT Geometry
 - $\circ~$ Coverage extended to $|\eta|$ < 4.0 ~
 - 4 barrel layers, 8 + 4 endcap disks each side
 - 2-sensor modules (inner part) and 2x2-sensor modules (outer)
- Different sensor types are now under evaluation
 - (planar or 3D sensors) x (square or long pixels)
 - Compared to Phase-1, the pixels have ½ area (2500 um2)
 - 3D sensors attractive for use in the innermost layers
 - Better SNR, radiation hardness, lower V_{bias}

² x 2 IT module prototype

Inner Tracker

- Sensors directly bump-bonded to read-out chips
 - $\circ~$ CROC based on the ATLAS/CMS project RD53 ~
 - Highly integrated ASIC: "Analog island in digital sea"
 - Tests on RD53A and RD53B prototypes very encouraging
 - Final design of CROC ongoing, prototypes expected soon
- IT modules use serial powering using a constant current src
 - $\circ~$ Strings of up to 12 modules powered together
 - Power tapped as needed by each module through a shunt-LDO reg
 - $\circ~$ Greatly reduces amount of Cu cables (\rightarrow material budget)
 - HV circuit is separate and fed in parallel
- Modules communicate electrically via serial eLinks
 - $\circ~$ eLinks connect to portcards located further away from beam
 - A portcard hosts 2 lpGBTs a DC-DC converter and optoelectronics
 - High speed optical serial links to the detector back-end

Outer Tracker

- Coverage to $|\eta| < 2.4$
- OT design driven by L1 track finder
 - \circ pT-modules \rightarrow select pairs of hits from hard tracks
 - These pairs of hits ("stubs") are read out at 40 MHz
 - The track finder reconstructs tracks and feed L1T
- Two types of sensor modules at different radii
 - 2S: two microstrip sensors
 - Dimensions: 10 x 10 cm
 - Strip size: 5 cm x 90 um
 - **PS**: one macropixel + one microstrip sensor
 - Dimensions: 5 x 10 cm
 - Pixel size: 1.5 mm x 100 um
 - Strip size: 2.4 cm x 100 um
 - Pixel sensors improve z resolution and occupancy
 - Read-out is **binary** (no pulse height read-out)
- Sensors manufactured by Hamamatsu Photonics K.K.
 - Pre-production runs started in July 2020
 - Begin of mass production expected 2021

Outer Tracker

- 2S strips read-out: CMS Binary Chip (CBC)
 - 127 channels from upper + 127 from lower sensor
 - A correlation logic builds the "stubs"
 - 8 CBCs needed to read out each side of a sensor
 - Extensively tested in past years
 - Final mass-production will begin soon
- PS strips read-out: Short Strip ASIC (SSA)
 - 120 channels
 - 8 SSAs needed to read out each side of a sensor
 - Under development, testing prototypes
- PS pixels read-out: Macro Pixel ASIC (MPA)
 - 1888 channels
 - Contains the correlation logic to build stubs
 - 16 MPAs needed to read out a sensor
 - Under development, testing prototypes
- PS and 2S: CMS Concentrator IC (CIC)
 - De-randomizes data rate fluctuations from events
 - Forwards hits and stubs to the IpGBT

A 2S front-end hybrid hosting 8 CBCs and a CIC

Schematic of the new revision of the CIC ASIC

Electronic system overview

- Outer tracker ASICS read out via serial eLinks
 - $\circ~$ 6 links per sensor side @ 320 Mbps for 2S modules
 - 7 links per sensor side @ 320/640 Mbps for PS modules
 - $\circ~$ 1 control link per sensor side @ 320 Mbps
- IpGBT located on-module (service/read-out hybrid)

- Inner tracker ASICS read out via 1.28 Gbps eLinks
 - High rate: 3 eLinks per read-out chip, 1 lpGBT/module
 - Low rate: data merging, 7 modules/lpGBT
 - $\circ~$ 1 control link per module @ 160 Mbps
- IpGBT located on portcards

OT Back-end system overview

- $\circ~$ Track finding is computationally hard \rightarrow need massive parallelization
 - $\circ~$ The read-out system is designed around the $\ensuremath{\text{divide and conquer}}$ concept
- $\circ~$ Division in space \rightarrow 9 azimuthal "nonants"
 - nonants read out by groups of DTC cards
 - $\circ~$ DTCs then send stubs to TFPs
- $\circ~$ Division in time ("Time Multiplexing") \rightarrow 18 full copies of the TF system
 - $\circ~$ Copies process events in turns (more time to complete the task)
 - \circ event1→TFP1, event2→TFP2, ..., event18→TFP18, event19→TFP1, ...
- High performance, low-latency processors
 - $\circ~$ Large FPGAs used to run highly parallel reconstruction algorithms

Data, Trigger and Control cards

- A high BW processor to read out and control tracker modules
 - Up to 72 FE modules via lpGBT links (5 or 10 Gbps)
 - o **Builds** event fragments from data streamed from the FE ASICs
 - Forwards hits to DAQ and from there to the HLT (25 Gbps optical)
 - Sends timing, trigger and control data to FE modules
 - Performs detector calibration using on-board resources
 - o (OT) Performs stub conversion from module-local to global coordinates
 - (OT) Routes stubs to their assigned Track Finders (25 Gbps optical)
- Total of 216 (OT) + 28 (IT) DTCs in the system
- \circ Large power & cooling needs \rightarrow ATCA standard
- The Serenity board will be used to fulfill the OT DTC role
 - Need to process up to 120 serial high-speed optical links
 - Xilinx Virtex UltraScale+, either 1 x VU13P or 2 x VU7P
 - Firefly high density transceivers (12 ch @ 28 Gbps)
 - $\circ~$ SoC (x86_64 or ZYNQ module) running CentOS Linux
 - Used for calibration, configuration & system control

1 x VU13P design

2 x VU7P design

Serenity prototype with 2 x KU15P

Track Finder Processors

- Different algorithms in FPGA explored in the past:
 - Tracklet seeding + iterative road search + linear fitter ("Tracklet")
 - 2D Hough transform + Kálmán filter ("TMTT")
- Current "Hybrid" algorithm merges the two approaches
 - Tracklet seeds are created from pairs of stubs in pairs of layers
 - $\circ~$ Search for matching stubs in the next layers, then merge duplicate tracks
 - $\circ~$ Candidate tracks pass through a Kálmán filter \rightarrow track parameter fit
 - Up to 300 tracks/evt = 12 billion tracks/s, with < 4 us latency
- Total of 162 track finder processor cards in the system
- $\circ~$ Apollo board targets the TFP and IT DTC role \rightarrow large FPGAs with lots of resources
 - Xilinx Virtex UltraScale+, either 2x VU9P or 1x VU13P
 - Firefly high density transceivers (12 ch @ 28 Gbps)
 - 2-piece board: Command Module (TF FPGA/Fireflies) and Service Module (carrier)
 - $\circ~$ Apollo, similarly to Serenity, hosts an SoC tasked with board management duties
 - ATCA standard: high electrical power, cooling & reliability

Testing of the OT modules

• As OT modules are produced, they will need to be tested

- System based of the FC7 AMC card (Kintex7 420T)
 - d19c firmware in FPGA
 - Phase2 Acquisition Control Framework in control PC
 - Communication via IPBus/UDP protocol
- $\circ~$ Automated testing of module components using a dedicated crate
- The framework is also used to test full modules at test beams
 - Optical read-out and control, like in the final experimental setup
- $\circ~$ Wide expertise gained in the development of these testing tools
 - $\circ~$ A test bed for the development of the DTC firmware

2S optical developmpent setup

Detail of the 2S service hybrid with optical connection

The FC7 AMC card

Firmware structure

Hybrid testing crate

Summary

- HL-LHC Upgrade
 - Challenge for sensors, readout, trigger and detector materials

• CMS Phase-2 Upgrade

- Inner (pixel) + outer (strip/pixel) trackers
- Both under intense research & development activities
- Some components to begin mass-production and assembly very soon
 - $\circ~$ Installation and commissioning of new tracker \rightarrow Long Shutdown 3 of LHC

• L1 Track finding

- Outer tracker back-end will reconstruct tracks for the L1 trigger
- $\circ~$ Very large system running reconstruction algorithms on FPGAs

Thanks! Спасибо! :)