

SFB 876 Providing Information by Resource-

Constrained Data Analysis

Feasibility study to measure the muon bremsstrahlung cross section with the energy loss profile using neutrino telescopes

5th International Conference on Particle Physics and Astrophysics

October 6th 2020

DFG e5 experimentelle physik 5 astroteilchenphysik

Jan Soedingrekso, Mirco Hünnefeld, Alexander Sandrock, Maximilian Meier

Muon Cross Section Uncertainties

- Muon cross sections are known to the percent level
 - What effects do small changes of the cross section have?
 - Are these effects measurable?
 - Should the uncertainties be included in the systematics?

Recent developments about uncertainties were shown by Alexander Sandrock this morning.

DFG e5 experimentelle physik 5 astroteilchenphysik

Process, value, parameter	Uncertainty of:	
·	1991	1997
Theoretical		
Extrapolation of $\sigma_{\gamma N}(\omega)$	2%	1%
Bremsstrahlung and pair production on atomic electrons	2.5%	<1%
Nuclear size correction for muon bremsstrahlung	3%	<1%
Fluctuations of energy loss due to pair production	2%	<1%
(A,Q^2) - dependence of photonuclear muon interaction	-	1-2%
Radiative corrections to pair production, bremsstrahlung, photonuclear interaction	-	1-2%
Atomic formfactor accuracy	-	1-2%
Experimental		
Estimation of rock thickness:		
- flat surface	1-2%	1-2%
- mountain overburden	2-5%	2-5%
Rock composition (Z^2/A)	1-2%	1-2%
Total theoretical	~5%	2-4%
Total experimental	2-5%	2-5%
Grand total	5-7%	3-7%

Kokoulin, Nucl Phys B70 (1999) 475

Neutrino Telescopes as Muon Detectors

- Searches for rare events
 - Glashow Resonance, v_{τ}
 - Depend on precise descriptions of stochastic processes of muons as main background

- IceCube, Baikal-GVD, KM3Net, P-ONE
 - Cubic kilometer scaled detector
 - Long muon tracks inside the detector
 - Energy loss profile of high energy muons

experimentelle physik 5 DFG eh astroteilchenphysi

Thu Aug 13 11:45:31 2009

Idea of Bremsstrahlung Cross Section Measurement

- Produce Simulation datasets differing in the scaling of the Bremsstrahlung (Multiplier)
- Reconstruct energy losses, propagation length and energy for different resolution settings
- Create 5 energy loss distributions for the muon energy intervals [1, 2.15, 4.64, 10, 31.6, 100] TeV
- Interpolate the differences of the energy loss bins between the Multiplier
- Estimate the performance on a test set

e5 experimentelle physik 5 astroteilchenphysik DFG

10TeV - 31.6TeV

Energy Loss / MeV

Single Muon Sample

- IceCube northern track sample of the diffuse v_{μ} analysis
 - Mainly through-going Muons
 - Starting events with additional hadronic cascade can be neglected
 - Almost 10 Years of Data
 - Roughly 245.000 events

DFG e5 experimentelle physik 5 astroteilchenphysik

Data taken from Stettner PoS(ICRC2019) 1017

Simulation and Reconstruction

- Muon Propagation with PROPOSAL (see talk by Jean-Marco Alameddine on Friday)
 - Energy loss cut of 500MeV
 - Energy spectrum E⁻¹
 - Energy range [100GeV, 1PeV]
 - Max. Propagation Length [100m, 1km]
- Reconstruction
 - 3 resolution settings
 - Smear out energy losses per track segment
 - Smear out propagated length
 - Estimate the muon energy from the track segments

e5 experimentelle physik 5 DFG astroteilchenphys

Energy Reconstruction with two independent methods

Truncated Energy

Neural Network

technische universität dortmund

SFB 876 Providing Information by Resource-**Constrained Data Analysis**

Energy Reconstruction dependence on Bremsstrahlung

DFG e5 experimentelle physik 5 astroteilchenphysik

Small Changes do not affect the energy reconstruction, just large increases affect the reconstruction.

Simulation and Reconstruction

SFB 876 Providing Information by Resource-**Constrained Data Analysis**

Interpolation of the differences in each energy loss bin

J. Soedingrekso I 06/10/2020

DFG e5 experimentelle physik 5 astroteilchenphysik

Further Systematic Parameters

- DOM Efficiency, scaling the reconstructed energy losses
- Spectral Index, weighting the events

3D interpolation of the bin differences

	Bremsstrahlung Multiplier	DOM Efficiency	Spectral Index
Range	[0.9, 1.1]	[0.9, 1.1]	[1.5, 1.9]
Default	1.0	1.0	1.7
Interpolation Order	Cubic	Quadratic	Quadratic

DFG e5 experimentelle physik 5 astroteilchenphysik

10

SFB 876 Providing Information by Resource-**Constrained Data Analysis**

Measurement of the Bremsstrahlung Multiplier and Systematics

Shrink area due to boundary

Performance of the Fit

High Resolution

J. Soedingrekso I 06/10/2020

experimentelle physik 5 astroteilchenphysik **e**5 DFG

High resolution ±2% accuracy

Medium resolution ±4% accuracy

_ow resolution Not feasible

Conclusion and Outlook

- Develop toy simulation creating reconstructed energy losses for muon studies just using PROPOSAL
- It is feasible to measure the Bremsstrahlung Multiplier with neutrino telescopes like IceCube using the energy loss profile of neutrino induced muons.
- The energy reconstruction is robust against small changes of the Bremsstrahlung.

experimentelle physik 5 eb DFG

Using also atmospheric muon samples to analyse muons

- Stopping muons, dominantly arriving as single muons, for lower energies
- Leading muons, containing most of the bundle energy, for higher energies

