

Dark matter search with noble gas twophase emission detectors Dmitry Akimov NRNU MEPhI

of Commany DTU

DARK MATTER

Louise Yeoman

Att.

Scient

Dark matter

From astrophysical observations and modern cosmology we know:

The widely accepted hypothesis is Particle Dark Matter - elementary particles (relic from Big Bang) with a weak interaction only:

Two-phase emission detection technique

is very suitable for Dark Matter search

It combines the advantages of gas detectors: the possibility of proportional or EL amplification, 3D (XYZ) positioning, and the possibility to have the large mass!

Advantages of two-phase noble gas emission detectors for WIMP search

- No long-life own radioactive isotopes (Xe). Ar has cosmogenic ³⁹Ar, but production of depleted Ar is well developed
- very low contamination by U/Th, K (can be easily purified by filtering)
- possibility of discrimination by simultaneous measurements of scintillation and ionization signals in a two-phase mode
- possibility to build large and even very large (ton-scale) detectors

•3D position sensitivity => "WALL-LESS" detector!!!

Particle identification is based on comparison of SC and EL signals

(on example of XENON10 experiment)

Progress of setting limits on SI WIMP-proton interaction cross-section

In Dark Matter search experiments, the progress of setting limits has increased significantly when liquid noble gas two-phase detectors started operation

ZEPLIN program

ZEPLIN II – the 1st two-phase emission DM detector 31 kg; 7.2 kg FV

Boulby mine, U.K. 'Palmer lab' 1100m, 2.8km water equiv. 10⁶ reduction in muon flux

Cross-section [cm²] (normalised to nucleon)

XENON program at the Gran Sasso National lab., Italy

X E N O N Dark Matter Project				
	XENON10	XENON100	XENON1T	XENONnT
Livetime [yyyy]	2005-2007	2008-2016	2015-2018	2020-202x
Xe mass [kg]	25	161	2300	8400
Target m [kg]	15	62	2000	5900
Drift [cm]	15	30	96	150
VETO	NO	NO	Muons	Muons+Neutrons
σ _{SI} [cm²]	8.8 X 10 ⁻⁴⁴	1.1 X 10 ⁻⁴⁵	4.1 X 10 ⁻⁴⁷	1.4 X 10 -48
	@ 100 GeV/c ²	@ 55 GeV/c ²	@ 30 GeV/c ²	@ 50 GeV/c ²

From A. Giovanni talk @ICHEP 2020

XENON program

Homestake mine; South Dakota Davis cavern

LUX Large Underground Xenon detector

250 kg in active volume (TPC); 100 kg in FV

LUX-ZEPLIN - LZ

PandaX program

DarkSide program, LAr two-phase detectors

DarkSide50 @ Borexino TF in Gran Sasso

Over 15 published papers, more are coming.

URANIA and ARIA projects to obtain large amounts of ³⁹Ar-free argon

Summary

- We can see now a very rapid development over ~ two decades of a two-phase emission detection technology stimulated by Dark Matter search race.
- The Dark Matter search experiments with noble gas twophase emission detectors have produced the best limits on WIMP-nucleon interaction (from ~10⁻⁴²cm² by ZEPLIN-II in 2007 to 4.1·10⁻⁴⁷ cm² by XENON1t in 2018)
- The development of two-phase emission detection technology have stimulated the progress in other areas:
 - development of new low-background, low-temperature photodetectors (including new large area SiPMs),
 - o development of noble gas purification methods,
 - development of new calibration methods (by ^{83m}Kr, by T),
 - o development of new position reconstruction methods,
 - detailed study of the energy transfer processes in liquid noble gases at low energies,
 - o etc.