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Introduction

Magnetars are highly interesting objects in the Universe.
Recent observations give ground to believe that some astrophysical
objects (SGR and AXP) are magnetars, a distinct class of isolated

neutron stars with magnetic field strength of B � Be , where
Be = m2/e ' 4.41× 1013 G.

The magnetic field in magnetars for the different models may reach
the values up to B ∼ 1014 − 1016 G.

In addition, analysis of the emission spectrum of some of these
objects indicates the presence in their vicinity of a relatively hot and

dense electron-positron plasma with temperature T ∼ 1 MeV.
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Introduction

Main goal
Investigation of the photon decay process due to the absorption of
a photon by an electron (positron), γe± → e±, and e+e− - pair

creation, γ → e+e−.
The problem

The expression for the decay width of photon in these processes in
the limit of a strongly magnetized plasma contains singularities of

the root type at points of a cyclotron resonances.
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Photon propagation in the magnetized medium

To describe the evolution of the electromagnetic wave Aα(x),
xµ = (t, x), in time, we use the technique detailed in (Chistyakov,
Mikheev 2001). We consider the linear response of the system
(Aα(x) and vacuum polarized in a magnetized plasma) to an

external source, which is adiabatically switched on at t = −∞ and
at time t = 0 turns off. At t > 0, the electromagnetic wave will
propagate independently. For this, the source function should be

selected in the form:

Jα(x) = jα e i kx eεt θ(−t), ε→ 0+.

jα = (0, j), j · k = 0 is the current conservation, qµ = (q0, k).
For simplicity, we consider the evolution of a monochromatic wave.
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Photon propagation in the magnetized medium

The dependence of Aα(x) on time is determined by the equation

(gαβ ∂2µ − ∂α∂β)Aβ(x) +

+

∫
d4x ′ Pαβ(x − x ′)Aβ(x ′) = Jα(x),

where Pαβ(x − x ′) is the polarisation operator in the magnetized
plasma.
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Photon propagation in the magnetized medium

Charge-symmetric plasma, µ = 0
The physical polarization vectors of the photons

ε(1)α (q) =
(qϕ)α√

q2⊥
, ε(2)α (q) =

(qϕ̃)α√
q2‖

are just as in the pure magnetic field.
The four-vectors with indices ⊥ and ‖ belong to the Euclidean

{1, 2}-subspace and the Minkowski {0, 3}-subspace correspondingly
in the frame were the magnetic field is directed along third axis;
(ab)⊥ = (aϕϕb) = aαϕ

ρ
αϕρβbβ , (ab)‖ = (aϕ̃ϕ̃b) = aαϕ̃

ρ
αϕ̃ρβbβ .

The tensors ϕαβ = Fαβ/B and ϕ̃αβ = 1
2εαβµνϕµν are the

dimensionless field tensor and dual field tensor correspondingly.
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Photon propagation in the magnetized medium

The solution of the wave equation for photons of the λ = 1, 2
modes can be represented as:

Aλα(x) = V (λ)
α (0, x)ReF (λ)(t) ,

where

V (λ)
α (0, x) = 2 e i kx ε(λ)α (ε(λ)j) ,

The function F (λ)(t) can be represented in the form of two terms

F (λ)(t) = F (λ)
pole(t) + F (λ)

cut (t).

The first term is determined by the residue at the point q0 = ω,
which is solution of the dispersion equation q2 − P(λ)(q) = 0, in
the kinematic region, where the value of the photon polarization

operator, P(λ)(q), is real.
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Photon propagation in the magnetized medium

The second term determines the dependence of the electromagnetic
field on time in the region between the cyclotron resonances

thresholds and has the form of a Fourier integral:

F (λ)
cut (t) =

∞∫
−∞

dq0
2π

F (λ)
cut (q0)e

−iq0t ,

F (λ)
cut (q0) =

2 θ(q0 − 2me) I (λ)

q0 ([q20 − k2 − R(λ)]2 + [I (λ)]2)
,

where R ≡ ReP(λ)(q0) is the real part of polarization operator,
I ≡ −ImP(λ)(q0+ iε) is the imaginary part of polarization operator.
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Photon propagation in the magnetized medium

The imaginary part of polarization operator can be obtained from
the photon absorption coefficient

W (λ)
abs = Wγ(λ)→e+e− + Wγ(λ)e±→e±

and represented in the form (Shabad 1988)

ImP(λ) = −2q0[1− exp(−q0/T )]W (λ)
abs

The real part of the polarization operator can be reconstructed from
its imaginary part using the dispersion relation with one subtraction:

P(λ)(t) =

∞∫
0

Im(P(λ)(t ′)) dt ′

t ′ − t − io
− P(λ)(0) , t = q20 .
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Photon propagation in the magnetized medium

This equations, solve the problem on finding the time dependence
of the photon wave function in the presence of strongly magnetized

plasma. Strictly speaking, due to the threshold behavior of the
Fourier transform F (λ)

cut (q0) character of time decay of the function
F (λ)

cut (t), and hence the wave function A(λ)
µ (t), differs from the

exponential one. However, during a certain characteristic time
interval (∼ [W (λ)

abs ]
−1), the dependence of the wave function can be

approximately described as exponentially decaying harmonic
oscillations

A(λ)
µ (t) ∼ e−γ

(λ)
eff t/2 cos(ωefft + φ0) .

Here ωeff and γ(λ)eff is the effective frequency and ratio photon
absorption of the λ mode, respectively, which should be found for

each value of the impulse k, which determines the effective
dispersion law of a photon in the region of its instability.
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Numerical analysis

The results of numerical calculations of the frequency dependence
of the decay width in the near-threshold regions at B = 200Be ,

T = 1 MeV and µ = 0 are presented in the following figures. Line 1
- coefficient photon absorption W (λ)

abs , calculated in the tree
approximation and containing root singularities; line 2 - decay
width obtained from the complex solution of the dispersion

equation on the second Riemannian sheet (Shabad 1988); line 3
matches the width decay γ(λ)eff calculated based on the

approximation in this paper.
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Numerical analysis

1 – W (λ)
abs , containing root singularities; 2 – the complex solution of

the dispersion equation on the second Riemannian sheet (Shabad
1988); 3 – approximation of this paper.
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Numerical analysis
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Conclusion

The process of propagation of an electromagnetic wave in a
highly magnetized, charge-symmetric plasma is investigated.
Taking into account the change in the dispersion properties of
a photon in a magnetic field and plasma, it has been
established that, similar to the case of a pure magnetic field,
the process of photon decay in a magnetized plasma has a
nonexponential character.
It is shown that the effective absorption width of a photon is
significantly smaller in comparison with the results known in
the literature.
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Thank you!!!
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