

nna

ray Space Telescope

Systematic search for gamma-ray periodicity in Fermi-LAT AGN

Pablo Peñil Universidad Complutense de Madrid (Spain)

with Alberto Domínguez et al. on behalf of the Fermi-LAT Collaboration, Jorge Otero, Juan Abel Barrio

P. Peñil, The Astrophysical Journal, 2020, Volume 896, N. 2, 34

5th International Conference on Particle Physics and Astrophysics 5-9 October 2020

Introduction

- AGN: variability in the overall electromagnetic spectrum
- Pattern → **Periodicity**
- Different strategies in the literature:
 - one object by means of a few (two) analysis algorithms
 - cross-correlation with other data of different wavelength

- ~ 2300 AGN (3FGL+2FHL+3FHL catalogs)
- Telescope time: 21st August 2008 7th September 2017
- Light-curve monthly binned: 28 days, E > 1 GeV
 - *Fermi*-LAT ScienceTools package: version v11r05p3
 - **P8R2 SOURCE V6** instrument response functions,
 - **fermipy** software package
- Cuts:
 - zenith angle cut of $\theta < 90^{\circ}$
 - solar flares and γ -ray bursts excluded
- For each source:
 - \circ 10° x 10° region
 - Integral Energy Flux above 1 GeV
 - Energy Flux Upper limits for TS<4 $\approx 2\sigma$

Periodicity Detection Methods

All of them have advantages and disadvantages
VanderPlas J., 2018
Goyal, A., et al. 2017

- Potential results comparison
- Organize the methods according to computational requirements

Periodicity-Search Pipeline

Periodicity-Search Pipeline

Periodicity-Search Pipeline

• 4 methods derive the same period at $\geq 4\sigma$

Name	RAJ2000	DecJ2000	Type	Redshift	Association Name
3FGL J0043.8+3425	10.96782	34.42687	fsrq	0.966	GB6 J0043+3426
3FGL J0210.7-5101	32.68952	-51.01695	fsrq	1.003	PKS 0208-512
3FGL J0211.2+1051	32.81532	10.85811	bll	0.2	MG1 J021114+1051
3FGL J0521.7+2113	80.44379	21.21369	bll	0.108	TXS 0518+211
3FGL J0811.3+0146	122.86418	1.77344	bll	1.148	OJ 014
3FGL J1146.8+3958	176.73987	39.96861	fsrq	1.089	S4 1144+40
3FGL J1248.2+5820	192.07728	58.34622	bll	—	PG 1246+586
3FGL J1454.5+5124	238.93169	11.18768	bll	· <u> </u>	TXS 1452+516
3FGL J1555.7+1111*	238.93169	11.18768	bll		PG 1553+113
3FGL J2158.8-3013*	329.71409	-30.22556	bll	0.116	PKS 2155-304
3FGL J2258.0-2759	344.50485	-27.97588	fsrq	0.926	PKS 2255-282

- PG 1553+113:
 - Ackermann, M., et al. 2015, (T=2.2 yr)
 - Tavani M., et al. 2018, (T=2.2 yr)
 - Sandrinelli A., et al., 2018, (T=2.2 yr)
 - **This work:** $T = 2.2 \pm 0.1 \text{ yr} (>4\sigma)$

- PKS 2155-304:
 - Sandrinelli A., et al., 2018 (T=1.73 yr)
 - Zhang P.-F., et al., 2017 (T=1.76 yr)
 - **This work:** $T = 1.7 \pm 0.1 \text{ yr} (>3.5\sigma)$

• 3 methods derive the same period at $\geq 4\sigma$

Name	RAJ2000	DecJ2000	Type	$\mathbf{Redshift}$	Association Name
3FGL J0102.8+5825	15.71134	58.41576	fsrq	0.644	TXS 0059+581
3FGL J0252.8-2218	43.20377	-22.32386	fsrq	1.419	PKS 0250-225
3FGL J0303.4-2407*	45.86259	-24.12074	bll	0.266	PKS 0301-243
3 FGL J0428.6 -3756^*	67.17261	-37.94081	bll	1.11	PKS 0426-380
3FGL J0449.4-4350	72.36042	-43.83719	bll	0.205	PKS 0447-439
3FGL J0457.0-2324	74.26096	-23.41384	fsrq	1.003	PKS 0454-234
3FGL J0501.2-0157	75.30886	-1.98359	fsrq	2.291	S3 0458-02
3FGL J0721.9+7120*	110.48882	71.34127	bll	0.127	S5 0716+71
3FGL J0818.2+4223	124.56174	42.38367	bll	0.530	S4 0814+42
3FGL J1303.0+2435	195.75454	24.56873	bll	0.993	MG2 J130304+2434
3FGL J1649.4+5238	252.35208	52.58336	bll		87GB 164812.2+524023
3FGL J1903.2+5541	285.80851	55.67557	bll		TXS 1902+556
3FGL J2056.2 -4714	314.06768	-47.23386	fsrq	1.489	PKS 2052-47

Results (II): L-Significance Candidates in the Literature

- PKS 0301-243:
 - Zhang P.-F., et al., 2017 (T=2.1 yr)
 - **This work:** $T = 2.0 \pm 0.1 \text{ yr} (\approx 3\sigma)$
- PKS 0426-380:
 - Zhang P.-F., et al., 2017 (T=3.3 yr)
 - **This work:** $T = 3.2 \pm 0.1 \text{ yr} (\approx 3\sigma)$
- S5 0716+71:
 - Prokhorov D. A., Moraghan A., 2017 (T=0.9 yr)
 - Sandrinelli et al., 2017 (T=0.9 yr)
 - **This work:** $T = 2.7 \pm 0.1 \text{ yr} (> 2.5\sigma)$

- False-Periodicity Detection Rate:
 ~ 1 false detection
- 5σ exposure estimation:
 o range 2-5 extra years
- The impact of upper limits in LCs:
 - significance: 10%-40%
 - period: 5%-30%

Name	#of Cycles to Reach 5σ	#Extra Years of LAT Observation
GB6 J0043+3426	≈ 2.8	≈ 6
TXS 0059+581	X	Х
PKS 0208-512	≈ 1.6	≈ 4
MG1 J021114+1051	≈ 2	≈ 4
PKS 0250-225	≈ 3	≈ 3
PKS 0301-243	≈ 3.6	≈ 7
PKS 0426-380	≈ 2	≈ 6
PKS 0447-439	≈ 2	≈ 5
PKS 0454-234	≈ 1.4	≈ 4
S3 0458-02	X	Х
TXS 0518+211	≈ 1.4	≈ 4
S5 0716+71	X	X
S4 0814+42	≈ 2	≈ 4.4
OJ 014	≈ 2.9	≈ 12
S4 1144+40	≈ 1.9	≈ 7
PG 1246+586	≈ 2.2	≈ 4
MG2 J130304+2434	X	Х
TXS 1452+516	≈ 1.4	≈ 3
PG 1553+113	≈ 1	≈ 2
87GB 164812.2+524023	≈ 1.4	≈ 4
TXS 1902+556	X	Х
PKS 2052-47	≈ 2.8	≈ 5
PKS 2155-304	≈ 2	≈ 4
PKS 2255-282	≈ 1.8	≈ 2.5

- Update γ-ray LAT light curves from September 2017 forward
- Improve the periodicity-search pipeline:
 - Autoregressive Models: ARIMA, ARFIMA, CARIMA, CARFIMA
- Expand the periodicity investigation to other wavelengths:
 - cross-correlation
 - analysis of possible emission mechanisms

- Systematic search of gamma-ray periodicity ~ 2300 *Fermi*-LAT AGN studied over 9 years of data.
- 11 gamma-ray periodicity candidates (4 methods at > 4σ)
 - 9 new candidates
 - 2 previously reported in the literature
- 13 low-significance candidates (3 methods at > 4σ)
 - 10 new candidates
 - 3 previously reported in the literature
- On-going research