

PROPOSAL: A library to propagate leptons and high energy photons

Jean-Marco Alameddine, Maximilian Sackel, Jan Soedingrekso, Alexander Sandrock

October 9, 2020

Technische Universität Dortmund



astroteilchenphysik

## What is PROPOSAL?

- PROPOSAL: Software library to propagate high-energy leptons and photons
- Written in C++11, callable from Python as well
  - Try: pip install proposal
- Easy-to-use, but still very customizable for different applications
- Actively maintained
  - Visit our GitHub: https://github.com/ tudo-astroparticlephysics/PROPOSAL





astroteilchenphysik

- PROPOSAL originally specialized on μ and τ propagation
- Recently,  $\gamma$  propagation and an improved treatment of  $e^-/e^+$  has been added
- Selection of different parametrizations for each process
  - ightarrow Several up-to-date parametrizations available
  - ightarrow Including effects such as LPM
  - ightarrow Rare processes can be included
  - → Easy to implement new parametrizations





astroteilchenphysik



- → Multiple scattering effects
- $\rightarrow$  Particle decays
- → Creation of secondary particles





- Interaction are characterized by their relative energy loss v
- PROPOSAL differentiates continuous energy losses and stochastic energy losses:

 $v < v_{\rm cut}$  continuous

 $v>v_{\rm cut}$  stochastic

with

$$v_{\rm cut} = \min\left[e_{\rm cut}/E, v'_{\rm cut}\right]$$

 $\rightarrow~{\rm Vary}~{\rm values}~{\rm for}~e_{\rm cut}$  and  $v'_{\rm cut}$  to adjust precision

Stochastic losses of  $10^7$  muons with  $E_i = 10^7$  MeV in 100 m of ice





astroteilchenphysik

## (Simplified) PROPOSAL propagation algorithm





astroteilchenphysik

## (Simplified) PROPOSAL propagation algorithm



# Energy integral $\int_{E_i}^{E_f} \frac{\sigma(E)}{-f(E)} \cdot dE = -\log(\xi)$ • $\sigma(E) = \sigma_{\text{total, stochastic}}$ • $f(E) = \frac{dE}{dx}\Big|_{\text{cont}} \propto E \int_{v_{\min}}^{v_{\text{cut}}} v \frac{d\sigma}{dv} dv$ • $\xi \in [0, 1)$

Stochastic losses are all energy losses with a fractional energy loss  $v > v_{\rm cut}!$ 



## (Simplified) PROPOSAL propagation algorithm



#### Displacement integral

$$\begin{split} x_f = x_i - \int_{E_i}^{E_f} \frac{\mathrm{d}E}{f(E)} \\ \bullet f(E) = \left. \frac{\mathrm{d}E}{\mathrm{d}x} \right|_{_{\mathrm{cont}}} \propto E \int_{v_{\mathrm{min}}}^{v_{\mathrm{out}}} v \frac{\mathrm{d}\sigma}{\mathrm{d}v} \mathrm{d}v \end{split}$$



## (Simplified) PROPOSAL propagation algorithm



![](_page_8_Figure_4.jpeg)

![](_page_9_Picture_0.jpeg)

(Simplified) PROPOSAL propagation algorithm

![](_page_9_Figure_3.jpeg)

![](_page_10_Picture_0.jpeg)

astroteilchenphysik

## Interpolation

- Many integrals need to be calculated during propagation
  - → Usage of interpolation tables to decrease runtime
  - → Both cross section integrals (left) and integrals necessary for propagation steps (right) are interpolated

![](_page_10_Figure_7.jpeg)

![](_page_11_Picture_0.jpeg)

astroteilchenphysik

![](_page_11_Figure_3.jpeg)

![](_page_12_Picture_0.jpeg)

astroteilchenphysik

#### Continuous randomization

![](_page_12_Figure_4.jpeg)

- Final energies of  $10^5$  muons with  $E_i = 10^8$  MeV propagated through 1 km of ice
- Simulating muons with identical initial energies causes a peak in the energy distribution
- $\rightarrow\,$  All particles with zero stochastic losses will have the same final energy

![](_page_13_Picture_0.jpeg)

#### Continuous randomization

![](_page_13_Figure_3.jpeg)

- Final energies of  $10^5$  muons with  $E_i = 10^8$  MeV propagated through 1 km of ice
- Simulating muons with identical initial energies causes a peak in the energy distribution
  - $\rightarrow\,$  All particles with zero stochastic losses will have the same final energy
  - PROPOSAL provides the feature continuous randomization
  - ightarrow This adds random fluctuations to the continuous losses

![](_page_13_Figure_9.jpeg)

![](_page_14_Picture_0.jpeg)

astroteilchenphysik

## IceCube Neutrino Observatory

- PROPOSAL used in IceCube simulation chain
  - $\rightarrow\,$  Interested in energy losses along a particle track, provided by the PROPOSAL propagator
  - $\rightarrow\,$  Energy losses are further processed by other tools to simulate Cherenkov photons
- Adjustable precision important for all large-scale detectors
  - High precision inside detector (small v<sub>cut</sub>)
  - $\blacksquare$  High performance in front of detector (higher  $v_{\rm cut}$  with continuous randomization)

![](_page_14_Picture_10.jpeg)

Credit: IceCube Collaboration

![](_page_15_Picture_0.jpeg)

astroteilchenphysik

## CORSIKA 8

- Up to CORSIKA7: Electromagnetic shower component simulated by EGS4
- CORSIKA 8: Inclusion of PROPOSAL as an EM shower model (see CORSIKA GitLab)
- $\blacksquare$  CORSIKA is interested in single propagation steps for  $e^+,e^-$  and  $\gamma$ 
  - $\rightarrow\,$  Modular structure of PROPOSAL allows to extract individual components of the propagation routine

![](_page_15_Figure_8.jpeg)

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_1.jpeg)

![](_page_16_Picture_2.jpeg)

## NuRadioMC

![](_page_16_Picture_4.jpeg)

## CORSIKA 8

![](_page_17_Picture_0.jpeg)

astroteilchenphysik

### Future developments

- Neutrino propagation in PROPOSAL
  - ightarrow Can be used for tau regeneration studies
- Stochastic deflections
  - → Deflections may occur in (very) stochastic interactions (especially for bremsstrahlung and photonuclear interactions)
  - $\rightarrow\,$  Can be used to examine the influences, e.g. on direction reconstructions
- Backward Monte Carlo simulations [1705.05636]
  - → Can be used to increase statistics for relevant event signatures

![](_page_17_Figure_11.jpeg)

![](_page_18_Picture_0.jpeg)

astroteilchenphysik

#### Current developments

## Current developments on GitHub branch restructure\_parametrization

- $\rightarrow\,$  Several improvements, both internally as well as for users
- $\rightarrow$  Preparations for inclusion in CORSIKA 8
- ightarrow Will be merged soon with our master branch
- If you are interested in using PROPOSAL ...
  - ...use pip install proposal to try it out ...look at our GitHub page for more information ...contact us directly! jean-marco.alameddine@udo.edu

|                                | ECAL - LOS MONTETONYNS MONTHE MANS CE'N Smalan ywysg                                                                                                            | anny charged Gaptine Through Media at C++ Strang- Mattia Frantis |                                                                                   | © ● ● ● ● ● ● |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------|
| €) ⇒ Ø @ [0 ≜ rocromacence     | o antioparticipapipasis PROPEDIAL                                                                                                                               |                                                                  | (198) 🛛 🏚                                                                         | n O e 🗢 e =   |
| Code Code Issues 20 11 Pu      | ROPOSAL                                                                                                                                                         | 💿 Wiki 🕕 Security 🖂 Insights                                     | ace 9 12 fair 13                                                                  | у бок п       |
| P mester - P 19 branches © 19  | P mater - P 19 brunchos (5 19 taps Gato Re 2 000 -                                                                                                              |                                                                  | About<br>Monte Carlo Simulation propagating<br>charged instructs through Media as |               |
| i oi orake                     | Use minimal required onable version to build on trav<br>Try to fix build for case insensitive file systems<br>Exclude vendor dependencies from dorggen          | is 7 months ago<br>6 months ago<br>6 months ago                  | C++ Library      EQL:3.0 License                                                  |               |
| private public noscurres tests | charge distance calculation in sector (#101)<br>Add missing header includes<br>Rename pyPROPOSAL to proposal, two #85<br>Rename pyPROPOSAL to proposal, two #85 | 5 months app<br>3 months app<br>6 months app<br>6 months app     | Releases (15)                                                                     |               |
| vendor  ptignore  ptroduke     | awitch to newest pybind version as base #43 was fo<br>Add setup.py<br>Vendor gitest, pybind11 and log4cplus                                                     | sed in pull request                                              | Packages<br>No packages published                                                 |               |