EFFECT OF A STRONGLY MAGNETIZED PLASMA ON THE RESONANT PHOTON SCATTERING PROCESS

A.A. Yarkov, D. A. Rumyantsev, M. V. Chistyakov P.G. Demidov Yaroslavl State University, Department of Theoretical Physics

Introduction

It is the established fact that the presence of a magnetic field in a wide class of astrophysical objects is a typical situation for the observable universe. The scale of the magnetic induction can vary over a very wide range: from large-scale (~ 100 kpc) intergalactic magnetic field ~ 10^{-21} Fc [1], to the fields that are realized in the scenario of a rotational supernova explosion $\sim 10^{17}$ Fc. In this case, objects with a fields scale of the so-called critical value are of particular interest $B_e = m^2/e \approx$ $4.41 \cdot 10^{13}$ G (The work uses a natural system of units, where $c = h = k_B = 1$, m – electron mass, m_f – fermion mass, e_f – fermion charge, e > 0- elementary charge). These include, in particular, isolated neutron stars, which include radio pulsars and the so-called magnetars, which have magnetic fields with induction from $B \sim 10^{12}$ G (radio pulsars) до $B \sim 4 \cdot 10^{14}$ G (magnetars).

An analysis of the emission spectra of radio pulsars and magnetars also indicates the presence of an electron-positron plasma in their magnetospheres with a concentration of the order of the Goldreich-Julian concentration [2]:

$$n_{GJ} \approx 3 \cdot 10^{13} \text{cm}^{-3} \frac{B}{100B_e} \frac{10c}{P}$$
, (1)

where P – the rotation period of the neutron star.

It is of interest under such conditions to consider the reaction of Compton scattering, taking into account the possible resonance on a virtual electron, taking into account the change in the polarization and dispersion properties of the photon.

Photon absorption rate in the strong magnetic field

In a magnetized plasma, in the general case, a photon will have elliptical polarization and 3 polarization states.

In the limit $B \gtrsim B_e$ and charge symmetric plasma $(\mu = 0)$ polarization vectors will be the same as in a pure magnetic field

$$\varepsilon^{(1)}_{\mu} = \frac{(\varphi q)_{\mu}}{\sqrt{q_{\perp}^2}}, \ \varepsilon^{(2)}_{\mu} = \frac{(\tilde{\varphi} q)_{\mu}}{\sqrt{q_{\parallel}^2}}$$

Photon mod 2 on the area $q_{\mu}^2 \ge 4m^2$ is instability - damping $\gamma^{(2)} \rightarrow e^+ e^-$.

Mod 1 photon decays into e^+e^- pair on the area

$$q_{\scriptscriptstyle \rm II}^2 \geqslant (m + \sqrt{2eB + m^2})^2$$

The scale of photon energy 1 at which resonance is possible

$$q_{\rm II}^2 \gtrsim (\sqrt{m^2 + 2eB} - m)^2$$

Therefore, to study the resonance, it is sufficient to consider the channels $e\gamma^{(1)} \to e\gamma^{(1)}$ and $e\gamma^{(1)} \to$ $e\gamma^{(2)}$.

Amplitude taking into account the finite width of electron absorption given by

$$\mathcal{M}_{\lambda \to \lambda'} = -4\pi\alpha \exp\left[-\frac{q_{\perp}^2 + q_{\perp}'^2 - 2i(q\varphi q')}{4eB}\right] \times \\ \times \sum_{n=0}^{\infty} \frac{\varepsilon_{\alpha}^{*(\lambda')}(q')\varepsilon_{\beta}^{(\lambda)}(q)T_{\alpha\beta}^n}{q_{\perp}^2 + 2(pq)_{\perp} - 2eBn + i(E+\omega)\Gamma_n} + \\ + (q \leftrightarrow -q')$$

 Γ_n – total electron absorption width [3], $T^n_{\alpha\beta}$ – regular value,

 p^{μ} and p'^{μ} – momenta of the initial and final electron.

▶ In the case of a narrow resonance peak, the denominator of the electron propagator can be interpolated by the δ -function:

$$|\mathcal{M}_{\lambda'\lambda}|^2 \simeq \sum_{n=0}^{\infty} \times \frac{\pi}{(\omega + E_n) \Gamma_n} \times \delta(q_{\shortparallel}^2 + 2(pq)_{\shortparallel} - 2eBn - M_n^2) \times |\ldots|^2.$$

In this case, the absorption rate [4]:

$$W_{\lambda e \to \lambda' e} = W_{\lambda e \to e}$$

O δ -approximations can be found in more detail in the literature [4]. Photon absorption rate [5]:

$$W_{\lambda e \to \lambda' e} = \frac{eB}{16(2\pi)^4 \omega_{\lambda}} \int |\mathcal{M}_{\lambda \to \lambda'}|^2 Z_{\lambda} Z_{\lambda'} \times f_E(1 - f_{E'})(1 + f_{\omega'}) \delta(\omega_{\lambda}(\mathbf{k}) + E - \omega_{\lambda'}(\mathbf{k}')) \frac{dp_z d^3 k'}{EE' \omega_{\lambda'}}.$$

Т=1 МэВ $B = 200 B_{e}$ 10^{5} 10^{4} $\frac{W}{W_0}$ Рис. 1: $B=200B_e$ T=50 кэВ $\frac{W}{W_{c}}$

Для канала $1 \rightarrow 2$

 $T=1 M \Im B$

$B = 200 B_{e}$

Рис. 3

- ▶ The cross section is calculated and compared with the results available in the literature. It is shown that in the case of high temperatures T > m, when resonance has an effect on the photon absorption coefficient earlier than assumed in the work [5]. In particular for a magnetic field $B = 200B_e$ and temperature T = 1MeV results of work [5] should be limited to photon energies $\omega \sim 4$ MeV.
- It is shown that the use δ -functional approximation of resonance peaks in the resonance region is in good agreement at a temperature $T \sim 1$ MeV with relevant results [6] obtained cumbersome numerical calculations. At a temperature $T \sim 50 \text{ keV}$ δ -functional approximation works worse, since the peak becomes narrower and the resonance effect occurs later.

Literature

- [1] D. Ryu, D. R. G. Schleicher, R. A. Treumann, C. G. Tsagas, and L. M. Widrow. Magnetic fields in the large-scale structure of the universe. Space Science Reviews, 166(1-4):1-35, 2012.
- [2] P. Goldreich and W. H. Julian. Pulsar electrodynamics. Astrophys. J., 157:869-880, 1969.
- [3] A. V. Kuznetsov and N. V. Mikheev. Electroweak processes in external electromagnetic fields. Springer-Verlag, New York, 2003.
- [4] D. A Rumyantsev, D.M. Shlenev, and A.A. Yarkov.

for the channel $1 \rightarrow 1$

where q^{μ} $\mu q'^{\mu}$ – momenta of the initial and final photons.

In this case, 4 partial photon scattering channels possible

 $e\gamma^{(1)} \rightarrow e\gamma^{(1)}, e\gamma^{(2)} \rightarrow e\gamma^{(2)}, e\gamma^{(2)} \rightarrow e\gamma^{(1)}, e\gamma^{(1)} \rightarrow$ $e\gamma^{(2)}$.

The following designations were used in this work: $(ab)_{\perp} = a_x b_x + a_y b_y, \ (ab)_{\shortparallel} = a_0 b_0 - a_z b_z,$ $(a\varphi b) = a_y b_x - a_x b_y$. $\varphi_{\alpha\beta} = F_{\alpha\beta}/B$ and $\tilde{\varphi}_{\alpha\beta} =$ $\frac{1}{2}\varepsilon_{\alpha\beta\mu\nu}\varphi_{\mu\nu}$ – dimensionless field tensor and dual tensor, respectively.

Symbols 1 and 2 correspond to \parallel and \perp polarizations at work (Adler 1971), X - and O - mods at work (Mushtukov et al. 2016), and E - and O - mods at work (Thompson et al. 1995).

$$f_{\omega} = [\exp(\omega/T) - 1]^{-1}, f_E = [\exp(E/T) + 1]^{-1}.$$

 $Z_{\lambda}^{-1} = 1 - \frac{\partial \mathcal{P}^{\lambda}}{\partial \omega^2}$. *E* и *E'* the energy of the initial and final electrons, respectively.

$$\lambda, \lambda' = 1, 2.$$

Numerical analysis

Comparative analysis of the probability of scattering in the case of resonance (solid line), work [5] (dotted line) and interpolation δ -function marked with dots.

Resonances in Compton-Like scattering

processes in an external magnetized medium.

JETP., 125:410-419, 2017.

[5] M. V. Chistyakov and D. A. Rumyantsev. Compton effect in strongly magnetized plasma.

Int. J. Mod. Phys., A24:3995-4008, 2009.

[6] Alexander A. Mushtukov, Dmitrij I. Nagirner, and Juri Poutanen.

Compton scattering S-matrix and cross section in strong magnetic field. Phys. Rev., D93(10):105003, 2016.