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Introduction

It is the established fact that the presence of
a magnetic �eld in a wide class of astrophysical
objects is a typical situation for the observable
universe. The scale of the magnetic induction can
vary over a very wide range: from large-scale (∼ 100
kpc) intergalactic magnetic �eld ∼ 10−21 Ãñ [1],
to the �elds that are realized in the scenario of a
rotational supernova explosion ∼ 1017 Ãñ. In this
case, objects with a �elds scale of the so-called
critical value are of particular interest Be = m2/e ≈
4.41 · 1013 G (The work uses a natural system of
units, where c = h = kB = 1, m � electron mass,
mf � fermion mass, ef � fermion charge, e > 0
� elementary charge). These include, in particular,
isolated neutron stars, which include radio pulsars
and the so-called magnetars, which have magnetic
�elds with induction from B ∼ 1012 G (radio
pulsars) äî B ∼ 4 · 1014 G (magnetars).

An analysis of the emission spectra of
radio pulsars and magnetars also indicates the
presence of an electron-positron plasma in their
magnetospheres with a concentration of the order
of the Goldreich-Julian concentration [2]:
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where P � the rotation period of the neutron star.
It is of interest under such conditions to consider

the reaction of Compton scattering, taking into
account the possible resonance on a virtual electron,
taking into account the change in the polarization
and dispersion properties of the photon.

Photon absorption rate in the strong
magnetic �eld

In a magnetized plasma, in the general case,
a photon will have elliptical polarization and 3
polarization states.
In the limit B & Be and charge symmetric plasma
(µ = 0) polarization vectors will be the same as in
a pure magnetic �eld
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where qµ è q
′µ � momenta of the initial and �nal

photons.
In this case, 4 partial photon scattering channels
possible
eγ(1) → eγ(1), eγ(2) → eγ(2), eγ(2) → eγ(1), eγ(1) →
eγ(2).
The following designations were used in this work:
(ab)⊥ = axbx + ayby, (ab)q = a0b0 − azbz,
(aϕb) = aybx − axby. ϕαβ = Fαβ/B and ϕ̃αβ =
1
2εαβµνϕµν � dimensionless �eld tensor and dual
tensor, respectively.

Symbols 1 and 2 correspond to ‖ and ⊥ polarizations at work (Adler 1971),

X - and O - mods at work (Mushtukov et al. 2016), and E - and O - mods

at work (Thompson et al. 1995).

Photon mod 2 on the area q2
q > 4m2 is instability

� damping γ(2) → e+e−.
Mod 1 photon decays into e+e− pair on the area

q2
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The scale of photon energy 1 at which resonance is
possible
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Therefore, to study the resonance, it is su�cient
to consider the channels eγ(1) → eγ(1) and eγ(1) →
eγ(2).

I Amplitude taking into account the �nite
width of electron absorption given by
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Γn � total electron absorption width [3],
T nαβ � regular value,
pµ and p′µ � momenta of the initial and �nal
electron.

I In the case of a narrow resonance peak, the
denominator of the electron propagator can be
interpolated by the δ-function:
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In this case, the absorption rate [4]:

Wλe→λ′e = Wλe→e

Î δ-approximations can be found in more
detail in the literature [4].
Photon absorption rate [5]:

Wλe→λ′e = eB
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fω = [exp(ω/T )− 1]−1 , fE =
[exp(E/T ) + 1]−1 .

Z−1
λ = 1 − ∂Pλ

∂ω2 . E è E′ the energy of the
initial and �nal electrons, respectively.

λ, λ′ = 1, 2.

Numerical analysis

Comparative analysis of the probability of
scattering in the case of resonance (solid line),
work [5] (dotted line) and interpolation δ-function
marked with dots.
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Summary

I The cross section is calculated and
compared with the results available
in the literature. It is shown that
in the case of high temperatures
T > m, when resonance has an e�ect
on the photon absorption coe�cient
earlier than assumed in the work
[5]. In particular for a magnetic �eld
B = 200Be and temperature T = 1
MeV results of work [5] should be
limited to photon energies ω ∼ 4
MeV.

I It is shown that the use δ-functional
approximation of resonance peaks
in the resonance region is in good
agreement at a temperature T ∼ 1
MeV with relevant results [6] obtained
cumbersome numerical calculations.
At a temperature T ∼ 50 keV
δ-functional approximation works
worse, since the peak becomes
narrower and the resonance e�ect
occurs later.
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