

Development of Si Beam Position Detectors for NA61/SHINE experiment

Makhnev A., Guber F., Serebryakov D., Institute for Nuclear Research of RAS Szymon Pulawski, Seweryn Kowalski, University of Silesia

The NA61/SHINE detector at the CERN SPS is undergoing a major upgrade during the LHC Long Shutdown 2 period (2019-2021). The upgrade is essential to fulfil the requirements of the new open charm measurement program. In this program detector will operate at a beam intensity increased by a factor of 10, which requires an upgrade of current Beam Position Detectors (BPDs). New BPDs should monitor lead and proton beam intensities with 10⁵ Hz intensity.

Detector selection

- New detector will use Hamamatsu S13084 silicon strip detector
- 1024 diodes on a single silicon wafer
- Off-the-shelf part
- Similar detectors were used at LHC, BM@N, JPARC

Mounting at the beam pipe

- Beam profile is measured with a telescope

Structure

Parameter	Specification
Туре	PolySi-bias AC-readout
Si thickness	320 ± 15
Si crystal plane direction	<100>
Chip size	(98770 ± 20) × (98770 ± 20)
Active area	97280 × 97280
Strip layout	512 ch × 2 columns
Number of strips	1024
Strip pitch	190
Strip implant width	80
Strip readout Al width	90
Readout pad size	165 × 100 × 2

Unit

ch

μm μm

- consisting out of 3 detectors
- For each BPD a 6-way fitting will be used
- 2 sides of 6-way fitting are connected to the beam pipe (possibly with adapters)
- Other 2 sides of 6-way fitting will hold the detectors
- Mounting fixtures are offset so the beam hits the middle of the detector's sensitive area

Mechanical design

- Detector assembly consists out of:
- ISO-K round vacuum flange cap and centering/sealing ring
- Aluminum plate mounted perpendicular to the cap via optical angle brackets
- Flexible PCB glued to the plate and the detector mounted to it
- Two 104-pin D-Sub High Density feedthroughs with O-ring seals
- Mating connectors, mounted to an aluminum plate and the flexible PCB

Front end electronics design

- Discrete amplifiers with off-the-shelf components
 A typical amplifier consists out of:
 - Fast charge-sensitive amplifier
 - Intermediate amplifier
 - 50-Ohm output buffer
 - Power regulators
- A prototype PCB is manufactured
- Prototype has been fitted with scale-changing circuitry to operate at both heavy ion beams and proton beams
- Prototype has been tested for:
 - Proton beam-scale and heavy ion-scale charge amplification
 Noise spectrum

Ch2 100mV

