Physics and Performance of the Upgraded T2K's ND280

Adrien Blanchet
LPNHE - (Paris)

The 8th of October - 2020
The T2K Experiment

Physics Motivations
- Neutrino Oscillation Experiment
- Precise measurement of Δm^2_{23}, θ_{23}
- Searching for the CP violation in the lepton sector (δ_{CP})
- Neutrino mass hierarchy

Scientific Instruments
- J-PARC Neutrino Beam
- Super-Kamiokande
- ND280, INGRID, Wagasci, Baby MIND

295 km

~ 600 MeV ν_μ / anti-ν_μ beam
T2K - Super-Kamiokande (SK)

Super-Kamiokande
A water Cherenkov detector.

- Excellent particle identification
- Excellent momentum reconstruction (through range)
- Interaction vertex reconstruction
- Track Multiplicity
- Particle range

Main Challenges
- Accumulation of statistics
- Good understanding of systematics
 - $\nu_\mu/\bar{\nu}_\mu$ flux
 - Neutrino-Nucleus Int. Models
- Near and far detectors
• Last publication shown the results with 3.1×10^{21} POT
• Approx. 50% neutrino - 50% anti-neutrino
• 515 kW stable operation in 2019
 • + 33% of v-mode for next analysis
T2K - The Near Detectors

INGRID: On-axis

ND280: Off-axis

Wagasci/Baby MIND: Off-axis
T2K - Off-axis ND280

- ND280 detector provides:
 - 2 neutrino interaction targets: one with Carbon, one with Water (like SK)
 - 3 TPCs for particle tracking
 - 1 surrounding magnet which provide particle charge identification
- ND280’s role in T2K is to provide stringent constrains on the systematic parameters:
 - Events are gathered in samples by their topologies
 - Neutrino/Anti-Neutrino data are fitted with prior uncertainties

X-sect parameters

Flux parameters

ND280 Fit

SK Fit
• **\(\delta_{CP}\) measurement has been published** by the T2K collaboration on the 15th of April
 • “No CP violation” scenario excluded at C.L. ~ 2\(\sigma\)
 • Including reaction constrains (\(\theta_{13}\))

• **The next generation of experiments is willing to push the constrains further on** \(\delta_{CP}\)
Improving ν-Nucleus Interaction Models

- Main source of systematic uncertainties
 - Binding Energy (E_b)
 - Final State Interaction (with π absorption)
 - ν_μ 2p2h normalisation

- CCQE formulae for energy reconstruction of the neutrino does not work well for other components
- 2p2h component is not very well known: $2p2h/CCQE = 10\%-20\%$?
- We need to study with better precision the kinematics of outgoing particles in order to better constrain 2p2h in the fit

T2K Run 1-10 Preliminary

- CCQE formulae for energy reconstruction of the neutrino does not work well for other components
- 2p2h component is not very well known: $2p2h/CCQE = 10\%-20\%$?
- We need to study with better precision the kinematics of outgoing particles in order to better constrain 2p2h in the fit
Low energy recoil protons allow us to measure transverse momentum imbalance to access nuclear effects: Fermi momentum and re-interactions.

\[(p_\mu, \cos\theta_\mu) \rightarrow (\delta p_T, \delta\alpha_T, p_n \ldots)\]

- \(\delta p_T\) is almost a direct measurement of the Fermi momentum
- Measuring \(\delta p_T\) in bins of \(\delta\alpha_T\) may allow excellent separation of 2p2h and FSI (Final State Interactions)
The Upgrades of ND280: Super-FGD

- x2 in statistics for equal POT
- **Super-FGD**
 - Quasi-3D imaging
 - Improved tracking
 - Lower proton detection threshold
 - Neutron measurement capabilities
 - Time of Flight for background reduction
The Upgrades of ND280: HA-TPCs

- High Angle TPCs
 - Improved high angle acceptance
 - Better tracking capabilities

These upgrades are being constructed and will be installed at J-PARC in 2022.
• Very promising results:
 • 2p2h will be constrained to less than 5% (prior uncertainty is currently at 100%)
 • Binding Energy (E_b) parameter could be constrained at better than 1 MeV

• Next step is to include more systematics
 • Adding them to the simple fitter
 • Or using a more robust framework to imitate the fit
Conclusion

- We are now closing the measurement of the PMNS matrix.
 - Atmospheric angle close to maximal.
 - Rejected CP conservation ($\sin(\delta_{CP}) = 0$) @ 2σ C.L.
 - Mild preference for normal hierarchy.

- Today’s state of the art
 - Main systematics are from the beam modelling (improved with the NA61/SHINE hadron production experiment) and x-section modelling.
 - T2K made a great job to reduce x-sec uncertainties to ~3%.
 - To reduce even further the x-sec uncertainties an upgrade is being constructed.
 - T2K measurements are important for HK, DUNE, NOvA and atmospheric neutrino oscillations.

- Heading toward 3σ sensitivity on δ_{CP}
 - Several key-instruments are being upgraded: beam/far-detector/near-detectors
 - ND280 will provide a major role for understanding neutrino-nucleus models uncertainties
 - Especially thanks to 2 new integrated detectors: HA-TPC and Super-FGD
 - Will be able to measure hadrons kinematic along with the outgoing lepton
 - It will allow to take advantage of the transverse kinematic imbalance to provide new stringent constrains on each systematic parameters and models

- Upgraded ND280 will be an essential part of the Hyper-Kamiokande Near Detector complex
Questions