

Physics and Performance of the Upgraded T2K's ND280

Adrien Blanchet LPNHE - (Paris)

Our m

The 8th of October - 2020

Ikenoyama (Autumn)

The T2K Experiment

T2K - Super-Kamiokande (SK)

T2K - Accumulated Statistics

T2K - The Near Detectors

T2K - Off-axis ND280

- ND280 detector provide
 - 2 neutrino interaction targets: one with Carbon, one with Water (like SK)
 - 3 TPCs for particle tracking
 - 1 surrounding magnet which provide particle charge identification
- ND280's role in T2K is to provide stringent constrains on the systematic parameters
 - Events are gathered in samples by their topologies
 - Neutrino/Anti-Neutrino data are fitted with prior uncertainties

T2K - Latest Results

- δ_{CP} measurement has been published by the T2K collaboration on the 15th of April
 - "No CP violation" scenario excluded at C.L. ~ 2σ
 - Including reaction constrains (θ₁₃)
- The next generation of experiments is willing to push the constrains further on δ_{CP}

Improving v-Nucleus Interaction Models

- Main source of systematic uncertainties
 - Binding Energy (E_b)
 - Final State Interaction (with π absorption)
 - v_{μ} 2p2h normalisation

T2K Run 1-10 Preliminary

- CCQE formulae for energy reconstruction of the neutrino does not work well for other components
- 2p2h component is not very well known : 2p2h/CCQE = 10%-20% ?
- We need to study with better precision the kinematics of outgoing particles in order to better constrain 2p2h in the fit

Transverse Momentum Imbalance

LFG SuperFGD

RFG SuperFGD

Rep. Error

600

400

LFG No 2p2h SuperFGD

LFG No FSI SuperFGD

Benhar SF SuperFGD

800

1000

 $\delta p_{\tau}(MeV/c)$

 (0.25×10^{-39})

0.00

0

200

Low energy recoil protons allow us to measure transverse momentum imbalance to access nuclear effects: Fermi momentum and re-interactions.

$$(p_{\mu}, \cos\theta_{\mu}) \rightarrow (\delta p_T, \delta \alpha_T, p_n \dots)$$

- δp_T is almost a direct measurement of the **Fermi momentum**
- Measuring δp_T in bins of $\delta \alpha_T$ may allow excellent separation of 2p2h and FSI(Final State Interactions)

The Upgrades of ND280: Super-FGD

- x2 in statistics for equal POT
- Super-FGD
 - Quasi-3D imaging
 - Improved tracking
 - Lower proton detection threshold
 - Neutron measurement capabilities
 - Time of Flight for background reduction

The Upgrades of ND280: HA-TPCs

Muons in

TPC only

0

0.2

0.6

0.8 true $\cos \theta$

0.4

-0.2

-0.4

- High Angle TPCs
 - Improved high angle acceptance •
 - Better tracking capabilities

These upgrades are being constructed and will be installed at J-PARC in 2022

Physics And Performances

- Very promising results:
 - 2p2h will be constrained to less than 5% (prior uncertainty is currently at 100%)
 - Binding Energy (E_b) parameter could be constrained at better than 1 MeV
- Next step is to include more systematics
 - Adding them to the simple fitter
 - Or using a more robust framework to imitate the fit

Conclusion

- We are now closing the measurement of the PMNS matrix.
 - Atmospheric angle close to maximal.
 - Rejected **CP conservation** $(sin(\delta_{CP}) = 0)$ @ **2** σ **C.L.**
 - Mild preference for normal hierarchy.
- Today's state of the art
 - Main systematics are from the beam modelling (improved with the NA61/SHINE hadron production experiment) and x-section modelling.
 - T2K made a great job to reduce x-sec uncertainties to ~3%.
 - To reduce even further the x-sec uncertainties an upgrade is being constructed.
 - T2K measurements are important for HK, DUNE, NOvA and atmospheric neutrino oscillations.

- Heading toward 3σ sensitivity on δ_{CP}

- Several key-instruments are being upgraded: beam/far-detector/near-detectors
- ND280 will provide a major role for understanding neutrino-nucleus models uncertainties
- Especially thanks to 2 new integrated detectors: **HA-TPC** and **Super-FGD**
- Will be able to measure hadrons kinematic along with the outgoing lepton
- It will allow to take advantage of the transverse kinematic imbalance to provide new stringent constrains on each systematic parameters and models
- Upgraded ND280 will be an essential part of the Hyper-Kamiokande Near Detector complex

Questions

The international journal of science / 16 April 2020

E

An indication of matter-antimatter symmetry violation in neutrinos

Coronavirus The models driving the global response to the pandemic

Hot source Remnants of primordial nitrogen in Earth's mantle Revised age for Broken Hill skull adds twist to human evolution

