Status and Future of v astronomy and the Global Neutrino Network

October 8, 2020

0101011110101010101010101010

Christian Spiering, DESY Zeuthen

0201101010

1010101010101

Neutrino Telescopes

Physics Goals

Physics with neutrino telescopes

- Search for sources of high-energy cosmic rays
- Dark Matter and Exotic Physics
 - WIMPs
 - Magnetic Monopoles and other superheavies
 - Violation of Lorentz invariance
- Neutrino and Particle Physics
 - Neutrino oscillations
 - Charm physics
 - Cross sections at highest energies
- Supernova Collapse Physics
 - MeV neutrinos in bursts → early SN phase, neutrino hierarchy, ...
- Cosmic Ray Physics
 - Spectrum, composition and anisotropies, shadows of moon and Sun

Physics with neutrino telescopes

- Search for sources of high-enery cosmic rays <u>Diffuse flux + 1 point source cand.</u>
- Dark Matter and Exotic Physics
 - WIMPsMagnetic Monopoles and other superheavies
 - Violation of Lorentz invariance
- Neutrino and Particle Physics
 - Neutrino oscillations
 - Charm physics
 - Cross sections at highest energies
- Supernova Collapse Physics
 - MeV neutrinos in bursts → early SN phase, neutrino hierarchy, ...
- Cosmic Ray Physics
 - Spectrum, composition and anisotropies, shadows of moon and Sun

Upper limits Upper limits Upper limits

Precision measurements

First data at > 1 TeV

Waiting for next galactic SN

results add to standard EAS measurements

Neutrino Telescopes

The Detectors

Pioneers completed in the 1990s

Completed and Operating

Under Construction or planned

Worldwide Common Effort

Worldwide Common Effort

The Global Neutrino Network

GNN

- Exchange knowledge, software, people
- Develop common strategy
- Combine data (skymaps, ..)
- Cross check of results
- Cooperate in multimessenger and alert programs
- Topical Workshops
- Monthly Newsletter

The Discovery of a Diffuse Cosmic Neutrino Flux

The Astrophysical Diffuse Neutrino Flux

The Astrophysical Diffuse Neutrino Flux

Adding ANTARES (1.8 σ excess)

Individual Sources and Source Classes

NO STEADY H.E. NEUTRINO SOURCE DETECTED UP TO NOW

Stacking searches have been performed for

- **GRBs**
- Gamma-loud blazars
- Flat spectrum radio quasars (FSRQs)

with all IceCube and ANTARES searches resulting just in upper limits

Multi-Messenger Results

The first point source candidate

22. September 2017, 20:54 UTC

28. 9. Fermi-Satellite: Source: Active Galaxy TXS 0505+056, in a flaring state

From 29.8. on

MAGIC: High-ehery gamma rays TXS 05060+056 is in flaring state

Follow-up Observations of IceCube Alert IC170922

Looking back to archival data

Science 361 (2018) 147

Conclusion: Strong evidence (but not yet an undisputable discovery, i.e. an effect of 5 standard deviations), that blazars, especially TXS 0506+056, belong to the sites of very-high-energy cosmic ray acceleration.

Fantastic demonstration of the potential of multi-messenger observations !

Summary of where we stand

- Cosmic high-energy v discovered
- Opened new window, but landscape not yet charted: no steady point sources identified up to now
- Also: remaining uncertainties on spectrum and flavor composition
- Some individual sources in reach!
- Excluded GRB, Blazars, as sole source of HESE events

Where do we go?

GIGATON VOLUME DETECTOR BAIKAL GVD

See the talk of D. Zaborov tomorrow

2020: 7 clusters installed and operating Planned for 2024: 15 clusters

First results: See the talk of D. Zaborov tomorrow

Year	Total number of clusters	Total number of strings	Number of OMs
2016	1	8	288
2017	2	16	576
2018	3	24	864
2019	5	40	1440
2020	7	56	2016
2021	9	72	2592
2022	11	88	3168
2023	13	104	3744
2024	15	120	4320

KN3NET

KM3NeT: ORCA and ARCA

ORCA: determination of the Neutrino Mass Hierarchy, precision oscillation physics

ARCA: IceCube physics, but with better angular resolution and from the Northern hemisphere

KM3NeT: ORCA and ARCA

ORCA: determination of the Neutrino Mass Hierarchy, precision oscillation physics

ARCA: IceCube physics, but with better angular resolution and from the Northern hemisphere

The Pacific Ocean Neutrino Experiment

Prototyping for a multicluster array at the km³ scale (Canadian Pacific coast)

Makes use of existing infrastructure of oceanographers

Until now still rather small collaboration

Would add observation power at the Northern Hemisphere

arXiv:2008.04323

10 PeV to >10 EeV

10 TeV – 50 PeV

100 GeV – 5 PeV

improves DeepCore
performance at < 10 GeV</pre>

Neutrino energy (GeV)

Conclusions

- High-energy neutrino window is opened
- Extremely dynamical field
- Coordination within Global Neutrino Network
- Northern hemisphere: towards cubic kilometer detectors.
 Baikal-GVD, KM3NeT-ARCA, (PON?)
- Soon later IceCube towards 10 km³
- Mid 2020s and later: fill landscape of v sources with more and more entries. Close-in on cosmic ray sources ! (?)

THANK YOU FOR YOUR ATTENTION