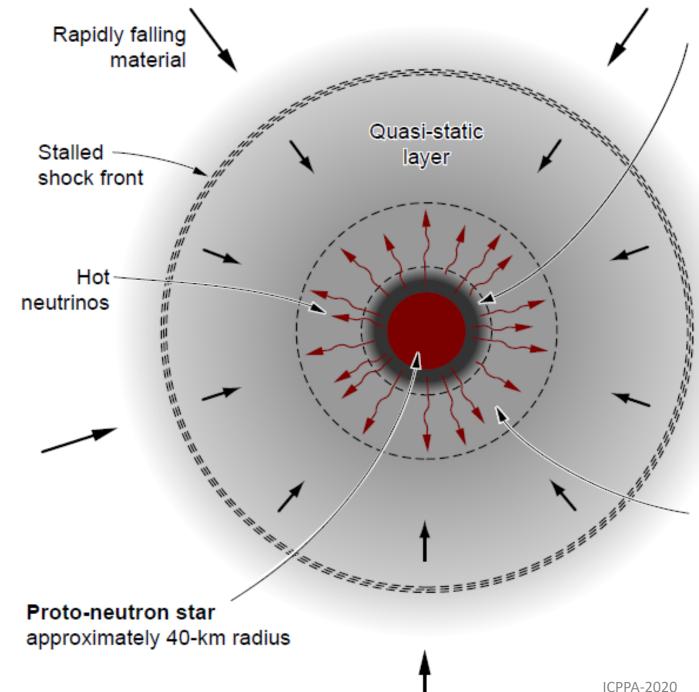
Incorporating the Heisenberg and Pauli principles into the kinetic approach to neutrino oscillations

Alexander Kartavtsev

P. G. Demidov Yaroslavl State University, Russia

Based on ArXiv <u>2007.13736</u>

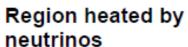


Region cooled by neutrinos

40- to 50-km radius; neutrinos are produced by the following reactions:

$$\begin{array}{l} p + e^- \rightarrow n + \nu_e \\ n + e^+ \rightarrow p + \overline{\nu}_e \\ e^+ + e^- \rightarrow \nu + \overline{\nu} \end{array}$$

~ 10⁵⁷ neutrinos, ~ 10 MeV 99% gravitational energy



50- to 100-km radius; neutrinos are absorbed by the following reactions:

$$n + \nu_e \rightarrow p + e^-$$

 $p + \overline{\nu}_e \rightarrow n + e^+$
 $\nu + e^{+/-} \rightarrow \nu + e^{+/-}$

Collective neutrino oscillations

Raffelt & Tamborra

Phys. Rev. D **82**, 125004 "decoherence by dephasing of many neutrinos"

<u>Akhmedov & Mirrizi</u>

nuclphysb.2016.02.011 "decoherence by wave packet separation"

Outline

The effect of

decoherence by wave packet separation can be incorporated into the

kinetic approach to neutrino oscillations through the initial conditions consistent with the

Heisenberg principle

ICPPA-2020 3

Decoherence by wave packet separation

$$i\partial_t \psi_i(t, \mathbf{x}) = \mathsf{H}_{ij}(t, \mathbf{x}) \psi_j(t, \mathbf{x})$$

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix} \qquad \begin{array}{c} v_2 \\ v_3 \\ \hline \\ \phi = 0 \end{array} \qquad \begin{array}{c} \text{A. Yu. Smirnov} \\ \frac{1609.02386}{1609.02386} \end{array}$$

$$\psi_i(0, \mathbf{p}) \propto \exp\left(-\frac{(\mathbf{p} - \mathbf{p}_w)^2}{4\sigma_p^2}\right) e^{-i\mathbf{p}\mathbf{x}_w}$$

Kinetic approach to neutrino oscillations

Liouville term

 $\partial_{t}\varrho(t,\mathbf{x},\mathbf{p}) + \frac{1}{2} \{ \partial_{\mathbf{p}} \mathsf{H}(t,\mathbf{x},\mathbf{p}), \partial_{\mathbf{x}}\varrho(t,\mathbf{x},\mathbf{p}) \} - \frac{1}{2} \{ \partial_{\mathbf{x}} \mathsf{H}(t,\mathbf{x},\mathbf{p}), \partial_{\mathbf{p}}\varrho(t,\mathbf{x},\mathbf{p}) \}$ $\approx -i \left[\mathsf{H}(t,\mathbf{x},\mathbf{p}), \varrho(t,\mathbf{x},\mathbf{p}) \right] + \mathcal{C}.$

Collision term

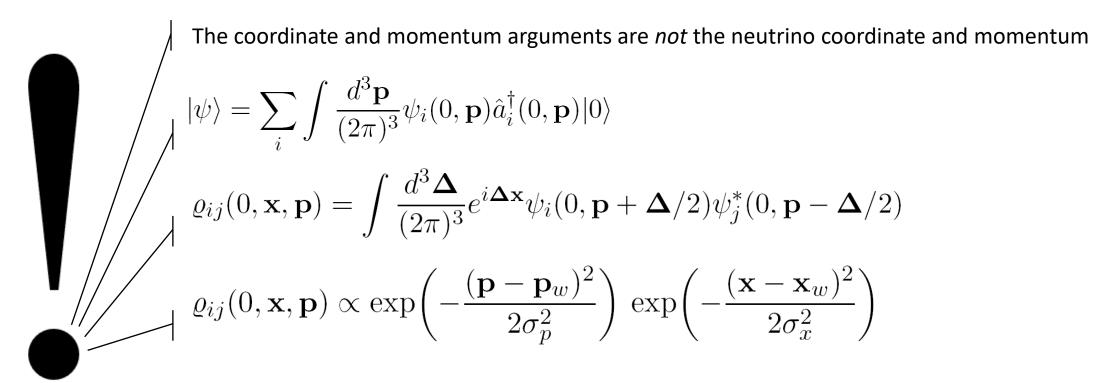
In quantum mechanics coordinate and momentum are not measurable simultaneously

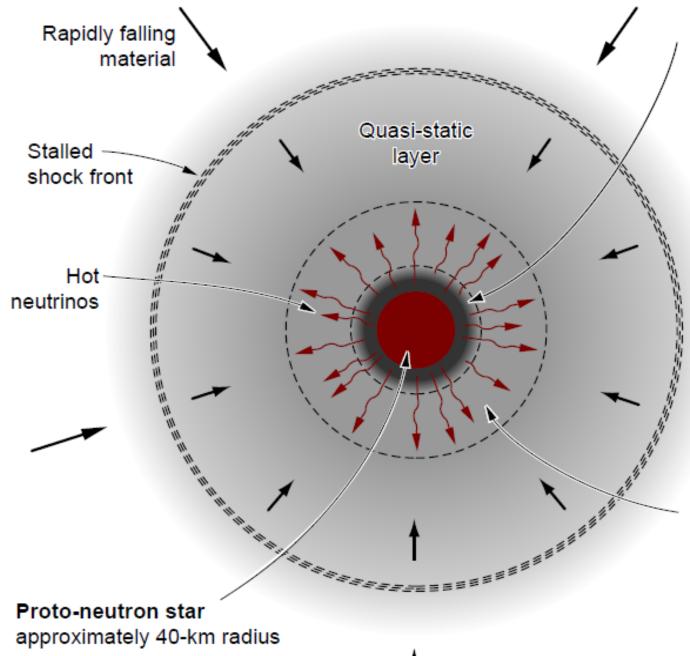
In the kinetic approach the coordinate and momentum arguments have definite values

This is frequently interpreted as a sign, that the kinetic approach is inherently classical

Heisenberg principle

$$\hat{\varrho}_{ij}(t, \mathbf{x}, \mathbf{p}) = \int \frac{d^3 \mathbf{\Delta}}{(2\pi)^3} e^{i\mathbf{\Delta}\mathbf{x}} \hat{a}_j^{\dagger}(t, \mathbf{p} - \mathbf{\Delta}/2) \hat{a}_i(t, \mathbf{p} + \mathbf{\Delta}/2)$$





Region cooled by neutrinos

40- to 50-km radius;

$$|\psi\rangle = \frac{1}{\sqrt{N!}} \sum_{i_1...i_N} \int \frac{d^3 \mathbf{p}_1}{(2\pi)^3} \dots \frac{d^3 \mathbf{p}_N}{(2\pi)^3}$$

$$\times \psi_{i_1...i_N}(0,\mathbf{p}_1\ldots\mathbf{p}_N)\,\hat{a}_{i_1}^{\dagger}(0,\mathbf{p}_1)\ldots\hat{a}_{i_N}^{\dagger}(0,\mathbf{p}_N)|0\rangle$$

Akhmedov & Mirrizi

"decoherence by wave packet separation"

$$\varrho_{ij}(0, \mathbf{x}, \mathbf{p}) \approx \sum_{l=1}^{N} \varrho_{ij}^{(l)}(0, \mathbf{x}, \mathbf{p})$$

Region heated by neutrinos

50- to 100-km radius; neutrinos are absorbed by the following reactions:

$$n + \nu_e \rightarrow p + e^-$$

 $p + \overline{\nu}_e \rightarrow n + e^+$
 $\nu + e^{+/-} \rightarrow \nu + e^{+/-}$

Raffelt & Tamborra

"decoherence by dephasing of many neutrinos"

Summary

The effect of

decoherence by wave packet separation can be incorporated into the

kinetic approach to neutrino oscillations through the initial conditions consistent with the

Heisenberg principle

ICPPA-2020 8

Wigner approach

$$i\partial_t \psi_i(t, \mathbf{x}) = \mathsf{H}_{ij}(t, \mathbf{x}) \psi_j(t, \mathbf{x})$$

$$\varrho_{ij}(t, \mathbf{x}, \mathbf{p}) = \int \frac{d^3 \mathbf{\Delta}}{(2\pi)^3} e^{i\mathbf{\Delta}\mathbf{x}} \psi_i(t, \mathbf{p} + \mathbf{\Delta}/2) \psi_j^*(t, \mathbf{p} - \mathbf{\Delta}/2)$$

$$\partial_t \varrho(t, \mathbf{x}, \mathbf{p}) + \frac{1}{2} \{ \partial_{\mathbf{p}} \mathsf{H}(t, \mathbf{x}, \mathbf{p}), \partial_{\mathbf{x}} \varrho(t, \mathbf{x}, \mathbf{p}) \} - \frac{1}{2} \{ \partial_{\mathbf{x}} \mathsf{H}(t, \mathbf{x}, \mathbf{p}), \partial_{\mathbf{p}} \varrho(t, \mathbf{x}, \mathbf{p}) \}$$

$$\approx -i \left[\mathsf{H}(t, \mathbf{x}, \mathbf{p}), \varrho(t, \mathbf{x}, \mathbf{p}) \right].$$