

the 5<sup>th</sup> International Conference on Particle Physics and Astrophysics



# Neutrino physics with the SHiP experiment at CERN

### Alessandra Pastore (INFN Bari) on behalf of the SHiP Collaboration



**ICPPA 2020** 



# Beyond Standard Model ...

#### Experimental hints of BSM physics

- $\boldsymbol{\nu}$  masses and oscillations
- Baryon Asymmetry of the Universe
- Dark Matter





ICPPA 2020



### and beyond Colliders

Search for Hidden Particles (SHiP) @ CERN-based Beam Dump Facility (BDF)



Access Bill DH's Access Bill Brownice Bill Target Hall Access Bill Access Bill

#### existing tunnels existing buildings new installations

ICPPA 2020

### - Slow extraction (1 sec)

- High intensity proton beam 4\*10<sup>13</sup> p/spill , 4\*10<sup>19</sup> pot/year 2\*10<sup>20</sup> pot/5 years
- O(400 GeV/c) optimal beam momentum





### The SHiP experiment



Dual detector system

- Scattering and Neutrino Detector (SND)
  - ightarrow neutrino physics and Light Dark Matter searches
- Hidden Sector detector (HS)

ightarrow search for new, weakly coupled, long lived particles from the Hidden Sector



# The SHiP experiment : general requirements

### driven by Hidden Sector phenomenology





# The SHiP experiment : general requirements

### driven by Hidden Sector phenomenology





# The SHiP experiment : general requirements

### driven by Hidden Sector phenomenology





- $\nu_{\tau}$  and anti-  $\nu_{\tau}$  physics with high statistics
- $\boldsymbol{\nu}$  induced charm production studies
- $v_f$  cross sections measurements

#### **Experimental requirements:**

- reconstruct v interactions  $\rightarrow$  Emulsion Cloud Chamber (ECC) technique + Target Tracker (TT)

 $\nu_{\mu}$ 

 $\nu_{\tau}$ 

 $\bar{\nu}_e$ 

 $\bar{\nu}_{\mu}$ 

 $\bar{\nu}_{\tau}$ 

52

46

36

70

 $3.2 imes 10^4$ 

 $2.6 imes 10^5$ 

 $6.0 \times 10^{5}$ 

 $2.1 imes 10^4$ 

- tag v flavour  $\rightarrow$  ECC technique +  $\mu$  ID system
- tag v and anti-v  $\rightarrow$  Magnetised target





# The Scattering and Neutrino Detector

Magnetized target



JINST 15 (2020) P01027

Magnetized volume of ~10 m<sup>3</sup> (B  $\cong$  1.2 T);

opening / closing mechanism to allow for emulsion film replacement during run

> RPC tracking planes hanging from top; upper trails for insertion / extraction sensitive area ~2×4 m<sup>2</sup> geometrical acceptance ~60%

**Muon ID System** 





### The Hidden Sector Detector

#### **Decay Vessel**





• Timing detector ( $\sigma_t < 100 \text{ ps}$ ) plastic scintillators + SiPM or MRPCs

• ECAL (SpiltCal) sampling lead/scintillator + SiPM high-precision layers (MicroMegas)

 Muon system
 four active stations equipped with scintillating tiles + SiPM + iron or concrete



spectrometer calorimeter

HS particle ID system



# Prototyping SHiP



Small-scale replica of the SHiP target



Prototype of the SND muon ID system



Prototype of a complete cell of the SBT



Prototype of MRPC (HS timing detector)



Prototype of a scintillating fibre module of the SND target tracker



Prototype of the ECAL

**ICPPA 2020** 



# Neutrino physics with the SND

- First observation of anti- $u_{ au}$
- Measurement of  $u_{ au}$  and anti-  $u_{ au}$  cross-sections

# of expected observed  $\nu_\tau$  int.

| Decay channel | $ u_{	au}$ | $\overline{ u}_{	au}$ |
|---------------|------------|-----------------------|
| $	au 	o \mu$  | 1200       | 1000                  |
| $\tau \to h$  | 4000       | 3000                  |
| $\tau \to 3h$ | 1000       | 700                   |
| total         | 6200       | 4700                  |

- First evaluation of  $\rm F_4$  and  $\rm F_5$  not accessible with other  $\nu$ 

$$\begin{split} \frac{d^2 \sigma^{\nu(\overline{\nu})}}{dx dy} &= \frac{G_F^2 M E_{\nu}}{\pi (1 + Q^2 / M_W^2)^2} \bigg( (y^2 x + \frac{m_\tau^2 y}{2E_{\nu} M}) F_1 + \left[ (1 - \frac{m_\tau^2}{4E_{\nu}^2}) - (1 + \frac{M x}{2E_{\nu}}) \right] F_2 \\ &\pm \left[ xy (1 - \frac{y}{2}) - \frac{m_\tau^2 y}{4E_{\nu} M} \right] F_3 + \frac{m_\tau^2 (m_\tau^2 + Q^2)}{4E_{\nu}^2 M^2 x} F_4 + \frac{m_\tau^2}{E_{\nu} M} F_5 \bigg), \end{split}$$





# Neutrino physics with the SND

- $\nu_{\rm e}$  cross sections at high energies
- strange quark nucleon content through charm production





**Expected anti-** $v_{\mu}$  **induced charm yield in SHIP ~ 2.5x10**<sup>4</sup> Observed in CHORUS ~32, in NuTeV ~1400

Significant gain in  $s^+/s^- vs x$ , with SHIP data (factor 2) obtained in the x range between 0.03 and 0.35

- normalization of hidden particle search



# Search for Heavy Neutral Leptons



T.Asaka, M.Shaposhnikov PLB 620 (2005) 17

### HNL production



*v* Minimal Standard Model (*v* MSM):
 Extension of the SM by 3 right-handed Heavy Neutral Leptons (HNLs)

- Light N<sub>1</sub>: Mass O(keV) Dark Matter candidate
- Heavy N<sub>2</sub>,N<sub>3</sub>: Mass O(GeV) Could explain v masses (through see-saw) and baryon asymmetry

### HNL decay





### Search for Heavy Neutral Leptons



T.Asaka, M.Shaposhnikov PLB 620 (2005) 17

### HNL production





HNL decay





Conclusion

- The SHiP experiment has been proposed at CERN to search for new Physics at the intensity frontier
- SHiP offers a unique opportunity for neutrino physics, including Heavy Neutral Leptons search and  $\nu_\tau$  physics with unprecedented sensitivities
- The detector R&D and prototyping activities are on-going and in a good shape
- The Beam Dump Facility and SHiP Comprehensive Design Studies were finalized in Dec. 2019, next steps towards TDR are under definition