ICPPA 2020

LVD status report: neutrino physics.

LVD COLLABORATION

Irina Shakiryanova, INR RAS

Contents

Large Volume Detector (LVD) Supernova detection frequency LVD and BUST correlation Neutrino velocity

Large Volume Detector (LVD)

Large Volume Detector (LVD)

 ✓ The largest iron-scintillation telescope in the world
 ✓ 3 towers, 7 levels, 5 columns:
 ✓ 840 scintillation counters situated in 105 portatanks
 (1010 tons of scintillator, 1000 tons of iron)

✓ Each portatank contains 8
 counters
 ✓ Counter size is
 1 m x 1 m x 1,5 m:
 ✓ Total mass: 1020 kg of
 CnH2n scintillator
 ✓ 3 PMT of Russian production

Neutrino signal detection

SuperNova Early Warning System (SNEWS)

 $\overline{E}_{\widetilde{v}_{e}} = 12 MeV$ $\overline{E}_{v_{e}} = 10 MeV$ $\overline{E}_{v_{\mu},\widetilde{v}_{\mu}} = (20 - 25) MeV$ $\overline{E}_{v_{\tau},\widetilde{v}_{\tau}} = (20 - 25) MeV$

Neutrino signal detection

ICCPA 2020

Neutrino signal detection

<u> </u>	UTC	$\mathbf{M}_{act}[t]$	$f_{bk}[s^{-1}]$	$D_{90\%}[kpc]$	m	$\Delta t[s]$	$F_{im}^{-1}[years]$	$\bar{E}_{signal}[MeV]$	N _L
1	1994 16 April 10:40:49.263	346	$1.08 \cdot 10^{-2}$	29.5	7	18.88	1.06	26.5	2
2	1995 27 August 16:18:10.478	431	$1.85 \cdot 10^{-2}$	35.0	7	5.49	11.16	36.2	1
3	1998 7 October 15:41:41.775	552	$1.40 \cdot 10^{-2}$	30.6	12	90.05	1.76	32.2	3
4	2009 18 July 7:39:20.517	976	$2.40 \cdot 10^{-2}$	40.4	12	42.71	4.02	14.6	1
5	2014 25 May 3:54:14.555	959	$2.78 \cdot 10^{-2}$	36.8	14	61.56	1.49	22.6	4
6	2014 18 December 20:21:28.787	937	$2.33 \cdot 10^{-2}$	45.9	8	9.98	3.22	18.8	3

Table 1: Characteristics of clusters with significance $F_{im} < 1 \cdot year^{-1}$.

ICCPA 2020

Signature of signal in LVD in the case of $\widetilde{\mathcal{V}}_e$ detecting

$$\tilde{v}_{e} + p \rightarrow e^{+} + n$$
The energy threshold for first signal from event in counter is 5 MeV
$$\boxed{\bigvee_{e^{+}} \gamma}_{e^{+}} = \frac{n + H \rightarrow d + \gamma \ (E_{\gamma} = 2.2 MeV)}{n + {}^{56}Fe \rightarrow {}^{57}Fe + \sum \gamma \ (E_{\gamma} = 10.16 MeV)} \right\} \tau \approx 185 \,\mu s$$

Signature of signal in LVD in the case of V_e detecting

$$V_e + \frac{56}{26}Fe \rightarrow \frac{56}{27}Co^* + e^-, \quad {}^{56}Co^* \rightarrow {}^{56}Co + \Sigma\gamma, E_{\gamma} = 7 \div 11MeV$$

and $V_i + {}^{12}C \to {}^{12}C^* + V_i$, $(i = e, \mu, \tau); {}^{12}C^* \to {}^{12}C + \gamma, E_{\gamma} = 15.1 MeV$

			Thre-					Back-					
Detector	Depth m.w.e	Mass, ktons	shold, MeV	Ef	ficien	су	Standard model			Colla Rotation		ground s ⁻¹	eV leV y
				η _{e+}	η _n	ηγ	− v _e p	ν _i e ⁻	ν _i C	ν _e A	v _e C		
LVD Italy, Russia	3300	1.0 C _n H _{2n} 0.95 Fe	4 – 6	0.9	0.6	0.55 0.45	500	22	55	250* 100** _	110* 50**	< 0.1	
In the case	e of Sta	ndard c	ollapse	e mod	el						* - E:	=40 Me	eV
100 25	11 4	1 %	** - E=30							=30 Me	eV		
Detection Betect					Detector is ready to search for neutrino from the collapsing stars, but the nature for the presents. LVD is possible to detect not only ele antineutrino via the inverse beta decay but also electron neutrinos due to interaction with iron and other types of via interaction on carbon nucle						re is n electro ay rea o thei of neu	niserly on oction	′
	30 40 50		80 90 1 istance [k			llapses	the rat in our)82 <i>eve</i>	Galaxy	/:				

LVD and BUST correlation

BUST

✓ locates at North Caucasus
 ✓ effective depth 850 mwe.
 ✓ 17 × 17 × 11 m³ in size and consists of four horizontal and four vertical plates
 ✓ 3184 scintillation counters

✓ Counter size is
 0.7 m x 0.7 m x 0.3 m:
 ✓ Total mass: 300 tons of
 CnH2n scintillator

During SN1987A

February 23, 1987. Large Magellanic Cloud. Distance ~ 50 kpc

1	3		5		7		9		11	
				1						
optical of	oserv	ations							ho	our, UT
m	v = 1	2 ^m						$m_{\rm v}$ =	$= 6^{m}$	
Geograv	2:5	2:35,4								
LSD 5	2:5	2:36,8 43,8			2		2:36:00 19			
KII 2 (4)	2:5	2:34 44			12	7	7:35:35 47			
IMB					8		2:35:41 47			
BUST 1	2:5	52:34			6		21 ':36:06			

Timing diagram of registered events from SN 1987A.

Timing diagram of the BUST pulses coincident with the LSD pulses within 1 s and similar coincidences for the K2 and LSD detectors as well as double pulses in LSD over the period from 0:00

to 10:00 UT on February 23, 1987.

LSD-BUST: within 2 hours 13 coincidences

LVD and BUST correlation, 2011-2014 yy.

5 coincidences per day recorded only twice during 4 years of readout experimental data.

GW 170817

10 days before and after GW 170817

Neutrino velocity

Cern Neutrino to Gran Sasso (CNGS) beam

Special beam structure from 10.05.2012 up to 24.05.2012

- 4 batch mode
- Time between modes is 300 ns
- Time inside one mode between signals is 100 ns
- $1.89 \cdot 10^{17}$ protons on target (p.o.t.)

Neutrino velocity

Summary

The report will present the results for 28 years of the experiment's existence.

New limit has been set on the frequency of supernova detection in our Galaxy: 0.082 events · year ⁻¹ at 90% c.l.

The results of the correlation analysis between detectors LVD and BUST are presented: 5 coincidences per day recorded only twice during the 4 years of readout experimental data, results for GW170817 seems like background events

Neutrino velocity limit measured by LVD is:

 $-3.3 \times 10^{-6} < (v - c)/c < 3.5 \times 10^{-6}$ m _v< 44 MeV/c² (99% confidence level)

Thank you!