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Introduction

• In experiments for direct DM searches or detection of
Coherent Elastic Neutrino Nucleus Scattering (CEνNS),
ionization only detectors, the signal entails the detection of
the ionization produced by the recoiling target ions following a
scattering event.

• The electronic excitation produced by a recoiling ion is
typically smaller than that produced by an electron of the
same energy, we name this as quenching ([eVnr]→ [eVee]).
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Quenching Factor for Dark Matter and ν experiments

• For DM searches with pure crystals the quenching play an
important role for calibration and efficiency.

• Different quenching, Lindhard and Chavarria (data), change
significantly the rate for CEνNs signal.
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Many experiments that rely on quenching factors
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Nuclear recoil in a pure material

• Suppose that the ion recoils from the interaction with an energy ER ,
after recoiling with an incident particle (e.g., a DM particle).

• Energy U is lost to some disruption of the atomic bonding, then
ER = E + U, then the ion moves with a kinetic energy E .

• The moving ion sets off a cascade of slowing-down processes that
dissipate the energy E throughout the medium.
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Lindhard’s model

• Lindhard’s theory concerns with determining the fraction of
ER which is given to electrons, H, and that which is given to
atomic motion, N, with ER = N + H.

• Defining reduced dimensionless quantities,
εR = cZER , η = cZH, ν = cZN where cZ = 11.5/Z 7/3keV.

• This separation is written as εR = η̄ + ν̄ (“average”).

• The quenching factor (fn) for a nuclear recoil is then defined
as the fraction of ER which is given to electrons (u = cZU):

fn =
η̄

εR
=
ε+ u − ν̄
ε+ u

(1)

When u=0 one recovers the usual definition.
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Basic integral equation and approximations

∫
dσn,e︸ ︷︷ ︸

total cross section

ν̄
(
E − Tn −

∑
i

Tei

)
︸ ︷︷ ︸

A

+ ν̄ (Tn − U)︸ ︷︷ ︸
B

+ ν̄(E)︸ ︷︷ ︸
C

+
∑
i

ν̄e (Tei − Uei )︸ ︷︷ ︸
D

 = 0

(2)

Lindhard’s (five) approximations

I Neglect contribution to atomic
motion coming from electrons.

II Neglect the binding energy, U = 0.

III The energy transferred to ionized
electrons is small compared to that
transferred to recoiling ions.

IV Effects of electronic and atomic
collisions can be treated separately.

V Tn is also small compared to the
energy E .
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Lindhard quenching factor

• In 1963, for E.q (2) Lindhard used the
above approximations, in which the
most important was U=0.

• He gave a parametrization for ν̄, but
only works for εR & 0.1 (when U=0,
εR = ε).

ν̄L(ε) =
ε

1 + kg(ε)
,

g(ε) = 3ε0.15 + 0.7ε0.6 + ε.

• First principles (e) stopping power
Se = kε1/2, k = 0.133Z 2/3/A1/2.

• Hence the quenching factor at
energies of few keV, start to
deviate from measurements.

PRD Chavarria et all, 94, 082007(2016)
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Simplified equation with binding energy

In order to keep the binding energy in to account a more general
equation have to be build based in relaxing the Lindhard II, III and V
approximations. We considered u constant and Se = kε1/2, nuclear
stopping dσn(t) with t = ε2 sin2(θ/2), so Eq.(2) transform:

−1

2
kε3/2ν̄′′(ε)+kε1/2︸ ︷︷ ︸

Se

ν̄′(ε) =

∫ ε2

εu

dt
f
(
t1/2

)
2t3/2︸ ︷︷ ︸
dσn

[ν̄(ε−t/ε)+ν̄(t/ε−u)−ν̄(ε)]

(3)
We recover Lindhard’s approach with u=0 and removing the red term.
So the equation predicts a threshold εthresholdR = 2u. The function f (t) is
related to the inter-atomic potential (e.g Thomas-Fermi).

The equation admits a solution featuring a “kink” at ε = u.
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Numerical solution

Shooting method
This equation can be solved numerically
from ε > u. Considering the physics and
the properties of the model, Eq.(3)
required the parametrization,

ν̄(ε) =

{
ε+ u, ε < u
ε+ u − λ(ε), ε ≥ u

(4)

where λ is a continuous function. To
solve for λ it’s possible to implement a
shooting method since there exist
boundary condition for ε� 1.
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Atomic constant binding energy U model

In general, U includes both the energy needed to remove the ion
from its site and contributions to excitation of bound atomic
electrons, therefore incorporates the Migdal effect.

Silicon* Germanium*
Shell U(eV) #e Shell U(eV) #e

[Ne]4 4 [Ar]18 18
2p 100 6 3d 30 10

Average e − h 3.7 4 Average e − h 3.0 4
Dislocation 36 Dislocation 23

* E. Clementi and D.L.Raimondi, J. Chem. Phys. 1963, 38, 2686.
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Results (Error band approximate cover the data fluctuation)

Germanium QF in good agreement with data, U = 0.02 keV and
k = 0.162. (Model refers to a simple anzats, see publication)
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Results

Silicon QF is in good agreement with data and a cutoff in 0.3 keV,
that is consistent with Chavarria2 measurements (0.3± 0.1keV),

U = 0.15 keV and k = 0.161.

2PRD,Chavarria et all,94, 082006(2016)
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Figure: Comparison of the numerical solutions for Si, Ge, with data. Also
shown is the phenomenological fit by Super-CDMS
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Beyond constant U model

• Going furhter down in energy we have to considered an energy
dependent binding energy.

• Inelastic interactions generally takes place against a
background of elastic scattering in colliding nuclei.

• Consequently, at any point of the phase space the electron gas
is expected to be only slightly excited.

• In the low energy (< 1keV ) region the Se , departures from
velocity proportionality due to Coulomb repulsion effects.

• Several theoretical results are available now that discuss the
above remarks; e.g Tilinin3, Kishinevsky.4

3PRA,I.S Tilinin,51,3058(1995)
4Kishinevsky, L.M., 1962, Izv. Akad. Nauk SSSR, Ser. Fiz. 26, 1410.
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Figure: Preliminary QF in Si using a model beyond constant binding
energy.
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Conclusions

1. We found an appropriate form for the basic integro-differential
equation describing the energy given to atomic motion by
nuclear recoils in Si and Ge, when a constant binding energy is
considered and 0.1 < k < 0.2.

2. Also this model can describe the total quanta in noble liquids
(Xe, Ar). Light and charge yields can be computed.

3. This model can be extended considering energy variable
binding energy. Also we are working in incorporate low energy
effects in the electronic stopping power.
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Ansatz

• We can implement a good
analytical approximation to
solve the integral equation.

• The idea is to lessen the
ionization contribution,
subtracting a fraction of the
electronic stopping power.

• η̄ = η̄lind − cε1/2 − c ′ where
c, c’ and u are estimated
from a fit to the available
data.

• Where η̄ = ε− ν̄. ε 
3−10 2−10 1−10 1

ν

3−10

2−10

1−10

1

 Correctedν

 Lindhard onlyν

+uε=ν
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Introduction

Lindhard parametrization was deduced based in the following:

i Neglect atomic movement from electrons, since is negligible at
low energies.

ii Neglect the binding energy U = 0.

iii Energy transferred to ionized electrons is small compared to
that transferred to recoiling ions.

iv Effects of electronic and atomic collisions can be treated
separately.

v Tn is also small compared to the energy E.

The main achievement of this work is to incorporate in the
physical model the binding energy U.
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Fits to data

We set a grid of 7x7 points in U and k region, in an acceptable
ranges, and compute the χ2/ndf of each (U,k) point to determine
the optimal value, we do this for Si and Ge.
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Lindhard’s model

1. Using dimensionless units (ε = 11.5E (keV)/Z7/3, ), the
quenching factor is defined:

quenching =
total ionization energy

total deposited energy
= fn =

η̄

εR

where η̄ and εR are the ionization energy and the total recoil
energy in adimensional units.

2. We concern about determining the fraction of εR which is
given to electrons, η̄, and that which is given to atomic
motion,ν̄, assuming ε̄R = η̄ + ν̄. Hence; η̄ = εR − ν̄.
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