

Sergey Kiselev (NRC KI - ITEP Moscow) for the ALICE collaboration

- Motivation
- ALICE detector
- Signal extraction
- $p_{\rm T}$ spectra
- Mean transverse momentum
- Yields
- Ratios to stable hadrons
- Nuclear modification factors
- Summary

Motivation

• pp and p-Pb collisions:

- \checkmark the baseline for heavy-ion collisions
- ✓ system size dependence
- \checkmark role of cold nuclear matter
- \checkmark study of collectivity in small systems

• AA collisions:

- ✓ in-medium energy loss
 - → nuclear modification factor for resonances
- \checkmark restoration of chiral symmetry
 - → modification of width, mass and branching ratio
- \checkmark re-generation and rescattering effects
 - → modification of yield and ratios to stable hadrons
 - → timescale between chemical and kinetic freeze-out

Resonance						
ρ(770) ⁰	1.3	ππ	r pp/Pb-Pb@2.76			
K*(892) ⁰	4.2	Κπ	pp@7/13 p-Pb/Pb-Pb@5.02 Xe-Xe@5.44			
$\Sigma(1385)^{\pm}$	5-5.5	Λπ	pp@7 p-Pb /Pb-Pb@5.02			
Λ(1520)	12.6	рК	pp@7 p-Pb@5.02 Pb-Pb@2.76			
Ξ(1530) ⁰	21.7	$\Xi^{-}\pi$	pp@7 p-Pb@5.02 Pb-Pb@2.76			
(1020)	46.4	КК	pp@7/13 p-Pb/Pb-Pb@5.02 Xe-Xe@5.44			

recent results for resonances

ALICE detector

Signal extraction

05-09 Oct 2020

$\langle p_{\rm T} \rangle$ vs. dN_{ch}/d η

Pb-Pb@2.76 ATeV

ALI-DER-339322

- pp: the increase with multiplicity at 13 TeV is similar to 7 TeV
- central Pb-Pb: mass ordering , $\langle p_T \rangle_{K^*} \approx \langle p_T \rangle_p$, $\langle p_T \rangle_{\phi} \approx \langle p_T \rangle_p$ as expected from hydrodynamics
- pp, p-Pb: mass ordering breaks down, $\langle p_T \rangle_{K^*} > \langle p_T \rangle_p, \langle p_T \rangle_\phi > \langle p_T \rangle_p$,
- pp, p-Pb: steeper increase with multiplicity (can be understood as the effect of color reconnection between strings produced in multi-parton interactions)

05-09 Oct 2020

K*0/K, ϕ /K vs. dN_{ch}/d η

ρ^0/π vs. $dN_{ch}/d\eta$

- ρ⁰/π shows a significant suppression
 going from pp and peripheral Pb-Pb collisions to most central Pb-Pb
 - → consistent with the re-scattering of daughters as the dominant effect
- EPOS3 with UrQMD:
 - overestimates the data
 - qualitatively reproduces the trend of the suppression
 - fails to reproduce the trend without UrQMD
- thermal model
 - overestimates the data

$\tau(\rho^0) = 1.3 \text{ fm/c}$

PR C99 (2019) 064901

Λ^*/Λ vs. $dN_{ch}/d\eta$

$\tau(\Lambda^*) = 12.6 \text{ fm/c}$

- Λ*/Λ shows a significant suppression
 going from peripheral Pb-Pb collisions to most central Pb-Pb
 - → consistent with the re-scattering of daughters as the dominant effect
- confirms trend seen by STAR at 200 GeV
- EPOS3 with UrQMD:
 - overestimates the data
 - qualitatively reproduces the trend of the suppression
- thermal models
 - all overestimate the ratio in central Pb-Pb collisions

EPOS: PR **C93** (2016) 014911 THERMUS: Comput. Phys. Commun. **180** (2009) 84 GSI-Heidelberg: PL **B673** (2009) 142 SHARE3: Comput. Phys. Commun. **185** (20014) 2056 STAR data: PR **C78** (2008) 044906

05-09 Oct 2020

Ξ^*/Ξ vs. $dN_{ch}/d\eta$

 $\tau(\Xi^{*0}) = 21.7 \text{ fm/c}$

• Ξ*/Ξ

- hint of suppression in central Pb-Pb
 w.r.t. pp and p-Pb, but systematics to be
 improved in peripheral Pb-Pb
- EPOS3 with UrQMD:
 - no suppression
 - overestimates the data
- thermal models
 - all overestimate the ratio in central Pb-Pb collisions

Σ^*/Λ vs. $dN_{ch}/d\eta$

NEW

- Σ*/Λ: a suppression is observed for the first time in Pb-Pb
 - → consistent with the re-scattering of daughters as the dominant effect
- pp/p-Pb: close to the STAR pp/d-Au data Pb-Pb: lower than the STAR Au-Au value
- •EPOS with UrQMD:
 - no suppression
 - overestimates the data
- •thermal model
 - overestimates the ratio in central Pb-Pb collisions

05-09 Oct 2020

Resonance suppression

Nuclear modification factor R_{AA}

Pb-Pb@2.76 ATeV

consistent with other light-flavoured hadrons at p_T > 8 GeV/c
 → suppression at high p_T is not dependent on hadron properties
 ρ⁰ and K*⁰ affected by radial flow and suppression at lower p_T

R_{AA} – centrality dependence

strong suppression for the most central collisions

05-09 Oct 2020

R_{AA} – energy dependence

no significant energy dependence

R_{AA} – system size dependence

K*(892)⁰

 R_{AA} 1.2**ALICE Preliminary** • Xe-Xe $\sqrt{s_{NN}}$ = 5.44 TeV, 0-30% 0.8 R_{AA} in Xe-Xe and Pb-Pb are consistent ■ Pb-Pb √*s*_{NN} = 5.02 TeV, 20-30% within uncertainties once compared at the same multiplicity $K^{*0}, |y| < 0.5$ 0.6 (and not just centrality percentile) 0.4 0.2 Uncertainties: stat. (bars), syst. (boxes) 0 2 6 8 10 12 0 4 *p*_{_} (GeV/*c*)

ALI-PREL-148580

Mean p_{T} :

- central **Pb-Pb**: mass ordering as expected from hydrodynamics
- **pp**, **p-Pb**: mass ordering violated steeper increase with multiplicity

Yields:

• **pp**, **p-Pb**, **Xe-Xe**, **Pb-Pb**: independent of collision system and energy appear to be driven by event multiplicity

Particle yield ratios:

	Ph-Ph:							
	resonance suppression	resonance	ρ	K*0	$\Sigma^{*\pm}$	Λ^*	Ξ* 0	ø
		lifetime (fm/c)	1.3	4.2	5-5.5	12.6	21.7	46.4
		suppression	yes	yes	yes	yes	? weak	no

qualitatively described by EPOS with UrQMD (except for $\Sigma^{*\pm}$)

R_{AA}:

- **Pb-Pb:** consistent with light-flavoured hadrons at $p_{\rm T} > 8 \text{ GeV}/c$
 - ρ^0 and K*⁰ affected by radial flow and re-scattering at lower p_T no significant energy dependence
- Xe-Xe: consistent with Pb-Pb once compared at the same multiplicity

Perspective

more resonances are being explored:

- Σ^0 in pp@7 TeV
- K*± in p-Pb@5.02/8.6 TeV
- $f_0(980)$ and $f_2(1270)$ in pp@5.02/13 TeV
- $\Xi(1820)^{-}$ in pp@13 TeV

