

Nuclotron-based Ion Collider fAcility

Study of the resonances in heavy-ion collisions at NICA energies using the MPD detector

V. Riabov* for the MPD Collaboration

* This work was supported by RFBR according to the research project № 18-02-40038

Outline

- Motivation for resonance studies in heavy-ion collisions
- Expectations for resonance properties in heavy-ion collisions at NICA energies
- Feasibility studies for particle reconstruction at NICA-MPD
- ✤ Summary

Resonances in heavy-ion collisions

✤ Wide variety of resonances in the PDG, most often/easily measured are:

<mark>ρ(</mark> 7	70) K*(892) ⁰ K*(892) ⁺	(1020)	Σ(1385) [±]	Λ(1520) Ξ(1530)	
uū	$\frac{d\bar{d}}{\sqrt{2}}$ ds	us	SS	uus dds	uds	uss	
]	Particle	Mass (MeV/ c^2)	Width (MeV/c ²)	Decay	E	3R (%)	
ρ ⁰		770	150	π+π	100		
	$K^{\star \pm}$	892	50.3	π±Ks		33.3	
ſ	K^{*0}	896	47.3	πK+		66.7	
	¢	1019	4.27	K+K-		48.9	
	Σ^{\star_+}	1383	36	π+Λ	Λ 87		
Σ*-		1387	39.4	πΛ	πΛ 87		
Λ(1520)		1520	15.7	K-p		22.5	
	Ξ*0	1532	9.1	π+Ξ-	66.7		

- Vacuum properties of the resonances are well defined (m, $c\tau$, BR etc.)
- ❖ Copiously produced in heavy-ion collisions at ~ GeV energies, large branching ratios in hadronic decay channels → possible to measure
- Probe reaction dynamics and particle production mechanisms vs. system size and $\sqrt{s_{NN}}$:
 - \checkmark hadron chemistry and strangeness production, ϕ with hidden strangeness is one of the key probes
 - \checkmark reaction dynamics and shape of particle p_T spectra, p/K*, p/ ϕ vs. p_T
 - \checkmark lifetime and properties of the hadronic phase
 - ✓ flow, comparison with e^+e^- measurements, jet quenching, background for other probes etc.

Hadronic phase and medium modifications

Increasing lifetime										
	ρ(770)	K*(892)	Σ(1385)	Λ(1520)	Ξ (1530)	(1020)				
c τ (fm/c)	1.3	4.2	5.5	12.7	21.7	46.2				
σ _{rescatt}	$\sigma_{\pi}\sigma_{\pi}$	$\sigma_{\pi}\sigma_{K}$	$\sigma_\pi\sigma_\Lambda$	$\sigma_K \sigma_p$	$\sigma_{\pi}\sigma_{\Xi}$	$\sigma_K \sigma_K$				

- ↔ Resonances have small lifetimes of $c\tau \sim 1 45$ fm, part of them decays in the fireball
- * Reconstructed resonance yields in heavy ion collisions are defined by:
 - ✓ resonance yields at chemical freeze-out
 - ✓ hadronic processes between chemical and kinetic freeze-outs: rescattering: daughter particles undergo elastic scattering or pseudo-elastic scattering through a different resonance → parent particle is not reconstructed → loss of signal regeneration: pseudo-elastic scattering of decay products ($\pi K \rightarrow K^{*0}$, KK→ ϕ etc.) → increased yields

SPS/RHIC/LHC observed multiplicity dependent suppression of ρ/π , K*/K, Λ */ Λ ratios, resonances with $c\tau \le 20$ fm/c. Ratios of longer lived resonances are not affected

Results support the existence of a hadronic phase that lives long enough to cause a significant reduction of the reconstructed yields of short lived resonances

Hadronic phase lifetime, $\tau \sim 10 \text{ fm/c}^*$

NICA: $\langle dN_{ch}/d\eta \rangle^{1/3} \sim 6^{**} \rightarrow$ RHIC/LHC report modifications at such multiplicities

* ALICE, Phys.Lett.B 802 (2020) 135225, Phys.Rev.C 99 (2019) 024905 ** PHENIX, Phys.Rev.C 93 (2016) 2, 024901

Hadronic phase and particle ratios

- ♦ Models with hadronic cascades (UrQMD, PHSD, AMPT) \rightarrow properties of hadronic phase
- ★ Models predict centrality dependent ρ/π , K*/K, ϕ/K and Λ^*/Λ , Σ^*/Λ , Ξ^*/Ξ ratios in AuAu@11
- \clubsuit Ratios are suppressed going from peripheral to central collisions for resonances with small ct
- ✤ Modifications occur at low momentum as expected for the hadronic phase effects

- ✤ Models predict yield modifications qualitatively similar to those obtained at SPS/RHIC/LHC:
 - \checkmark lifetime and density of the hadronic phase are high enough
 - modification of particle properties in the hadronic phase should be taken into account when model predictions for different observables are compared to data
 - \checkmark study of short-lived resonances is a unique tool to tune the hadronic phase simulations

MPD experiment, Stage-1

- ✤ Stage-1: ТРС, ТОF, FFD, FHCAL и ECAL
- ✤ Startup in 2022
- Simulate AuAu@4-11 collisions using different event generators
- Propagate particles through the MPD, 'mpdroot':
 - ✓ Geant (v.3 or v.4) for particle transport
 - ✓ realistic simulation of subsystem response (raw signals)
 - ✓ track/signal reconstruction and pattern recognition
- ✤ Basic event and track selections:
 - ✓ event selection: $|Z_{vrtx}| < 50$ cm
 - \checkmark track selection:
 - number of TPC hits > 24
 - |η| < 1.0
 - $|DCA \text{ to } PV| < 3\sigma$ for primary tracks
 - V0 topology cuts for weakly decaying secondaries
 - $p_T > 50 \text{ MeV/c}$
 - TPC-TOF combined $\pi/K/p$ PID
 - ✓ combinatorial background:
 - event mixing $(|\Delta_{Zvrtx}| \le 2 \text{ cm}, |\Delta_{Mult}| \le 20, N_{ev} = 10)$

TPC: $|\Delta \phi| < 2\pi$, $|\eta| \le 1.6$ **TOF, EMC**: $|\Delta \phi| < 2\pi$, $|\eta| \le 1.4$ **FFD**: $|\Delta \phi| < 2\pi$, 2.9 < $|\eta| < 3.3$ **FHCAL**: $|\Delta \phi| < 2\pi$, 2 < $|\eta| < 5$

Reconstruction efficiency: $\rho(770)$, K*(892), $\phi(1020)$, $\Lambda(1520)$

★ Typical reconstruction efficiencies (A x \in) in AuAu @ 4, 7.7 and 11 GeV, |y| < 1

♣ Reasonable efficiencies in the wide p_T range, |y| < 1

* Modest multiplicity (and/or $\sqrt{s_{NN}}$) dependence

Mass resolution: $\rho(770), K^*(892), \phi(1020), \Lambda(1520)$

Detector mass resolution ($m_{reconstructed} - m_{generated}$) in AuAu @ 4, 7.7 and 11 GeV, |y| < 1* Mass resolution (MeV/c²) Mass resolution (MeV/c² Mass resolution (MeV/c² Au+Au, $\sqrt{s_{NN}} = 11 \text{ GeV}$ Au+Au, VS_{NN} = 11 GeV ● Au+Au, √s_{NN} = 11 GeV Au+Au, √s_{NN} = 7.7 GeV Au+Au, √s_{NN} = 7.7 GeV u+Au, √s_{NN} = 7.7 GeV Au+Au, √s_{NN} Au+Au, $\sqrt{s_{NN}} = 4 \text{ GeV}$ Au+Au, $\sqrt{s_{NN}} = 4 \text{ GeV}$ 22 20 18 ρ**(770)⁰** K (892) K (89 ^{2.5} р_т (GeV/c) p_T^{2.5} p_T (GeV/c) 1.5 p_{_}^{2.5} p_{_}(GeV/c) 0.5 1.5 1.5 Mass resolution (MeV/c² Au+Au, √s_{NN} = 11 GeV Au+Au, $\sqrt{s_{_{
m NN}}}$ = 7.7 GeV Au+Au, $\sqrt{s_{_{
m NN}}}$ = 7.7 GeV Au+Au, $\sqrt{s_{NN}} = 4 \text{ GeV}$ Au+Au, √<mark>s_{NN}</mark> = 4 GeV 2 6.5 1.5 p_T^{2.5} p_T (GeV/c) $p_{_{T}}$ (GeV/c)

- ✤ Acceptable mass resolution
- * Modest multiplicity (and/or $\sqrt{s_{NN}}$) dependence

φ(1020), reconstructed peaks

- UrQMD v.3.4: AuAu@11 (10M events), AuAu@7.7 (5M events), AuAu@4 (5M events)
- ✤ Full chain simulation and reconstruction, $p_T = 0.2-0.4$ GeV/c, |y| < 1

- * Mixed-event combinatorial background is scaled to foreground at high mass and subtracted
- Distributions are fit to Voigtian function + polynomial
- Signal can be reconstructed at $p_T > 0.2$ GeV/c, high- p_T reach is limited by available statistics
- ✤ S/B ratios deteriorates with increasing centrality and collision energy

K^{*}(892) and $\Lambda(1520)$, reconstructed peaks

✤ UrQMD v.3.4: AuAu@11 (10M events), AuAu@7.7 (5M events), AuAu@4 (5M events), |y| < 1</p>

- \clubsuit Signal can be reconstructed from zero momentum, high-p_T reach is limited by statistics
- \clubsuit S/B ratios deteriorates with increasing centrality and collision energy

MC closure tests: ρ , K^{*0,±}, ϕ , Λ^*

- UrQMD v.3.4: AuAu@11 (10M events), AuAu@7.7 (5M events), AuAu@4 (5M events)
- Full chain simulation and reconstruction, p_T ranges are limited by the possibility to extract signals, |y| < 1

- ✤ Reconstructed spectra match the generated ones within uncertainties
- Measurements are possible starting from ~ zero momentum, sample p_T spectra in a wide range
- ✤ Maximum raw yields (smallest stat. uncertainties) are extracted at ~ 300 MeV/c

More complex decays: $\Sigma(1385)^{\pm}$, $\Xi(1530)^{0}$

★ Typical reconstruction efficiencies (A x \in) in AuAu @ 11 GeV, |y| < 1

Reconstruction: $\Sigma(1385)^{\pm}, \Xi(1530)^{0}$

♦ UrQMD v.3.4: AuAu@11 (10M events), full chain simulation and reconstruction, |y| < 1

- $\Sigma(1385)^{\pm}$ signal can be reconstructed starting from zero momentum, high-p_T reach is limited by statistics
- ✤ Monte Carlo closure test is passed

- ♦ For $\Xi(1530)^0$ observe a hint of a signal at $p_T > 0.4$ GeV/c, statistics-hungry measurement
- ✤ Larger data sample and embedded simulations are required

Summary

- \checkmark Measurement of resonances is important for the MPD physical program
- ✓ Models predict high sensitivity of resonances to the properties of the partonic/hadronic medium produced in heavy-ion collisions at NICA energies
- ✓ Resonances can be reconstructed/measured using the MPD detector from zero momentum to ~ 3 GeV/c with 10⁷ minimum bias events sampled, x10 events is needed for multiplicity dependent studies
- ✓ Measurements of resonances is a plausible task for year-1 operation

BACKUP

Nuclotron-based Ion Collider fAcility

NICA complex

- ✤ Modernization of the existing Nuclotron facility
- ✤ Fixed target experiment: BM@N
- ★ Construction of collider complex to collide:

 ✓ heavy ions up to Au, $\sqrt{s_{NN}} = 4-11$ GeV, $\mathcal{L} \sim 10^{27} \text{ cm}^{-2} \text{s}^{-1}$ ✓ polarized p and d, $\sqrt{s_{NN}} = 27$ GeV, $\mathcal{L} \sim 1032 \text{ cm}^{-2} \text{s}^{-1}$ (pp)
- ✤ Collider experiments: MPD, SPD
- \clubsuit NICA, MPD start of operation in 2022

Strangeness enhancement in pp, p-A and A-A

- ✤ Observed in heavy-ion collisions at AGS, SPS, RHIC and LHC;
- ✤ For the first time observed in pp and p-A collisions by ALICE at the LHC
- Observed as for ground-state hadrons as for resonances $(\phi/\pi, \Sigma^*/\pi, \Xi^*/\pi)$
- Strangeness production in A-A collisions is reproduced by statistical hadronization models. Canonical suppression models reproduce results in pp and p-A except for φ
- ♦ ϕ with hidden strangeness is not subject to canonical suppression $\rightarrow \phi$ is a key observable !!!

Hadronization at intermediate momenta

- & Baryon puzzle increased baryon-to-meson (p/π, Λ/K_s^0 , Λ_c^+/D) ratios in heavy-ion collisions at RHIC and the LHC
- Driving force of enhancement is not yet fully understood:
 - ✓ particle mass (hydrodynamic flow)?
 - ✓ quark count (baryons vs. mesons)?
- \blacklozenge ϕ and K^{*0} are well suited for tests as mesons with masses very close to that of a proton:
 - \checkmark $\Delta m_{\phi} \sim 80 \text{ MeV}/c^2$, $\Delta m_{K^*0} \sim -45 \text{ MeV}/c^2$

Model predictions for resonances at NICA

✤ UrQMD, PHSD, AMPT, EPOS …

- ✤ General predictions:
 - \checkmark resonances are still copiously produced and can be used to study physics of heavy-ion collisions
 - ✓ models predict enhanced production of particles with strangeness and different interplay of mechanisms responsible for shaping of the particle p_T spectra.

Eventually, model predictions (integrated yields, <p_T>, particle ratios etc.) should be compared to data to differentiate different model assumptions

Hadronic phase and particle ratios

Modifications occur at low momentum as expected for hadronic phase effects

- Models predict yield modifications for resonances qualitatively similar to those observed at higher collision energies:
 - \checkmark lifetime and density of the hadronic phase are high enough
 - ✓ modification of particle properties in the hadronic phase should be taken into account when model predictions for different observables are compared to data
 - \checkmark study of short-lived resonances is a unique tool to tune hadronic phase simulations

$\rho(770)$, reconstructed peaks

- UrQMD v.3.4: AuAu@11 (10M events), AuAu@7.7 (5M events), AuAu@4 (5M events)
- Full chain simulation and reconstruction, $p_T = 0.2-0.4 \text{ GeV/c}$, |y| < 1

- Mixed-event background subtraction, fits to Voigtian function + polynomial
- Contributions from K_s , ω , K^{*0} , f_0 and f_2 are subtracted (need to be measured in advance)*
- Signal can be reconstructed at $p_T > 0$ GeV/c, high- p_T reach is limited by available statistics
- S/B ratios deteriorates with increasing centrality and collision energy ICPPA-2020

$\rho(770)$, signal extraction – practice tests

Phys.Rev. C99 (2019) no.6, 064901

Fig. 1: (Color online) Invariant mass distributions for $\pi^+\pi^-$ pairs after subtraction of the like-sign background. Plots on the left and right are for the low and high transverse momentum intervals, respectively. Examples are shown for minimum bias pp, 0–20% and 60–80% central Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. Solid red curves represent fits to the function described in the text. Colored dashed curves represent different components of the fit function, which includes a smooth remaining background as well as contributions from K_S^0 , ρ^0 , $\omega(782)$, $K^*(892)^0$, $f_0(980)$ and $f_2(1270)$. See text for details.