

Production of K(892)^{*0} mesons in ³HeAu collisions at $\sqrt{s_{NN}}$ = 200 GeV

Vladislav Borisov

Yu. Mitrankov, Ya.A.Berdnikov, D. Kotov, A.Ya.Berdnikov

Peter the Great Saint-Petersburg Polytechnic University

5th International Conference on Particle Physics and Astrophysics 5-9 October 2020

Motivation

Signs of QGP formation: Jet quenching

Cold Nuclear Matter?

Motivation

Signs of QGP formation: Strangeness enhancement

 $K^{*0} \rightarrow (K\pi)^{\pm}$ -meson

Quark content	$d\bar{s}(\bar{d}s)$
Mass, (MeV/ c^2)	891.66±0.26
Lifetime, fm/c	4.16

Raw yield extraction

The K^{*0} -meson yields were extracted via invariant mass histogram

- Combinatorial background was estimated with mixed event technique;
- Normalized at $M_{inv} > 1.10 \text{ GeV/c}^2$ and subtracted;
- Residual background fitted with second order polynomial;
- Fitting Breit-Wigner convoluted with Gaussian function plus parabola;
- The K^{*0} yield is calculated as the sum of the bins in the histogram inside the invariant mass window $M_{K*0} \pm 2\sigma$ less the integrated polynomial background over the same mass window.

Transverse momentum spectra of K^{*0} -meson

1	d^2N	1	1	1	1	$N(\Delta p_T)$
$2\pi p_T$	$\frac{dp_T dy}{dp_T dy}$	$2\pi p_T$	2	N _{evt} Br	$\overline{\varepsilon_{eff}(p_T)}$	$\Delta p_T \Delta y$

 $> N(\Delta p_T)$ – the number of observed mesons $\succ p_T$ – transverse momentum K^{*0} -mesons $\succ \Delta p_T$ – transverse momentum bin $\succ \varepsilon_{eff}(p_T)$ – reconstruction efficiency > Br = 0.67 – branching ratios of $K^{*0}(\overline{K^{*0}}) \to K^{\pm} + \pi^{\mp}$ decays $\geq \frac{1}{2}$ points to the average of K^{*0} and $\overline{K^{*0}}$

The invariant p_T distributions of the K^{*0} -meson was measured at 1.55 < p_T < 5.75 for He+Au for 5 centrality bins. Dashed lines – fits with LEVY

Nuclear modification factors

R_{AB} of K^{*0} in d+Au & He+Au @200 GeV

The K^{*0} -meson nuclear modification factors in d+Au and ³He+Au in intermediate and high p_T range in the central collisions and MB the results are in a good agreement $_3$

R_{AB} of K^{*0}, $\varphi \& \pi^0$ in He+Au@200 GeV

10

in ³He+Au in all centralities values exhibit similar shape

- In all centralities in intermediate and high p_T range K^{*0} R_{AB} seems to be equal to unity in He+Au collisions;
- The K^{*0} , φ and π^{0} -mesons nuclear modification factors in He+Au collisions in all centralities values are in agreement within uncertainties;
 - > That might indicate that cold nuclear effects are not responsible for the differences between K^{*0} , φ and π^0 seen in heavy ion collisions;
- In central and MB collisions K^{*0} R_{AB} in He+Au and d+Au collisions are in agreement within uncertainties;

These results can provide additional constraints for the models that try to explain CNM effects

Thank you for attention!