

Feasibility of thermal photon measurements in heavy ion collisions at NICA energies

D. Ivanishchev, D. Kotov, E. Kryshen, M. Malaev, V. Riabov, Yu. Riabov (NRC «Kurchatov Institute» - PNPI) for the MPD collaboration

The 5th international conference on particle physics and astrophysics

This work was supported by RFBR according to the research project № 18-02-40045

Outline

- Heavy ion collisions at NICA
- Motivation for thermal photons study in heavy-ion collisions
- Photon conversion method
- •Feasibility studies for thermal photons measurement in the MPD
- Conclusions and outlook

Heavy ion collisions at NICA

- A mega-science project NICA, Dubna, JINR
- Modernization of existing Nuclotron facility
- Parameters:
 - ✓ relativistic ions up to Au, $\sqrt{s_{NN}} = 4-11$ GeV ✓ polarized p and d, $\sqrt{s_{NN}} = 27$ GeV (for p) \checkmark luminosity 10²⁷ cm⁻²s⁻¹
- Working experiment: BM@N (fixed target)
- Experiments under construction: MPD, SPD (collider)

Study of the phase diagram in the region of high baryonic density and intermediate temperatures

Quarkyonic phase

Proto-

Neutron stars

Color Super-

n_=0.16 fm-3

conductor

Net baryon density n/ no

Extension of modern heavy-ion programs at RHIC and the LHC to lower energies

Thermal radiation in heavy ion collisions

- Photons leave the medium without interaction
- Black body radiation: inverse slope proportional to T_{eff}

 e^+

Effective temperature vs energy

T_{eff} vs. collision energy

J. Phys.: Conf. Ser. 1070 (2018) 012012

Challenge: decay photons

Inclusive photon spectra are dominated by decay photons

$$R_{\gamma} = \frac{\gamma_{\rm inc}}{\gamma_{\rm deca}}$$

Relative contributions of different hadrons to the total decay photon spectrum as a function of the decay photon transverse momentum

Photon reconstruction: two methods

- Electromagnetic calorimeters
 - Efficient at $p_T > 2 \text{ GeV/c}$
 - Hardware trigger capabilities
- Photon conversion $\gamma \rightarrow e^+e^-$ in the material
 - $P = 1 \exp(-7/9 x/X_0)$
 - Efficient at $0.5 < p_T < 4 \text{ GeV/c}$
 - Much better resolution at low p_T

7

MPD experiment at NICA

- CMS Energy: 4-11 GeV
- Design luminosity: 10^{27} cm⁻¹ s⁻¹
- Stage 1: TPC, TOF, ECAL, FHCal, FFD
- Stage 2: + ITS + EndCap

Photon conversion centers

Main conversion structures in Stage 1:

- Beam pipe: 0.3% X₀
- Inner TPC barrel structures: 2.4% X₀ Future:
- Inner tracking system
- Dedicated photon convertor (cylindrical metal pipe) under investigation

Conversion reconstruction efficiency

- Studied with MPDROOT Stage 1 setup
- Using MpdParticle to build secondary vertices
- Cuts optimized to maximize signal significance
- Contribution of (non-gamma) background < 10-20%
 - can be further improved with tighter cuts

UrQMD and PHSD predictions at NICA energies

UrQMD and PHSD generators: good agreement in neutral meson cross sections

Neutral meson reconstruction

Neutral meson reconstruction efficiency

- Embedding technique used to study reconstruction efficiency vs p_T
- 700 000 min. bias UrQMD events @ 11 GeV
- 500 π⁰ + 500 η embedded with flat p_T distribution
- Neutral meson reconstruction efficiency ~ 10⁻⁴
- π⁰ peak is significantly narrower with conversion method compared to ECAL

Corrected π^0 spectra

- Efficiency-corrected spectra are extrapolated down to 0 p_T:
 - Tsallis function
 - Two-component model (Bylinkin, Rostovtsev)
 - Hagedorn function
- The obtained fits cab be used to calculate photon spectra from π^0 decays
- Extrapolation uncertainties are significant only at low photon $p_T < 0.3$ GeV/c

Integrated direct photon yield

No reliable predictions for photons in UrQMD/PHSD -> using data driven method

Phys. Rev. Lett. 123, 022301

The integrated direct photon yield:

- scales as (dN_{ch}/dη)^{1.25} in a wide range of multiplicities/collision energies
- the scaling is violated in small collision systems / small multiplicities ($dN_{ch}/d\eta < 20$)
- AA yield is a factor of ~10 larger than the N_{coll}-scaled yield in pp

Assuming this scaling still holds at lower energies, we can expect universal multiplicity scaling for

- (0-60)% centralities at 11 GeV
- (0-40)% centralities at 4 GeV

p_T -differential direct photon yields

- Universal scaling of p_{T} -differential direct photon yields at moderate p_{T} is observed at RHIC/LHC
- It can be used to predict p_T spectra of direct photons at NICA energies for $p_T > 0.6$ GeV/c
- Switch to thermal spectrum at $p_T < 0.6 \text{ GeV/c: } dN/dp_T \sim p_T \exp(-p_T/T)$
- Using conservative effective temperature T = 150 MeV (see e.g. PRC 93 (2016) 054901)

Reconstructed direct photons

• Reconstructed direct photon spectra can be obtained from predicted direct photon yields multiplied by the photon reconstruction efficiency

Inclusive photon spectra and R_v ratio

- Systematic uncertainties on R_v can be reduced to ~5%
- Conclusion: direct photon yields can be extracted with good accuracy down to low $\ensuremath{p_{\text{T}}}$

Conclusions and outlook

- Photons are valuable probes of dense hadronic matter produced in heavy ion collisions
- Photon conversion method is a powerful tool to measure photon and neutral meson spectra
- Reconstruction of thermal photon yields looks promising at MPD
- Next:
 - Evaluate perspectives of thermal photon flow measurements
 - Feasibility studies on the dedicated convertor and Stage 2 setup

BACKUP

Electron PID

Optimization of electron pair selection cuts

Fit functions for pt distributions

Two-component model (Bylinkin, Rostovtsev):

$$E\frac{d^{3}\sigma}{dp^{3}} = A_{e}\exp\frac{(M - \sqrt{p_{T}^{2} + M^{2}})}{T_{e}} + A\left(1 + \frac{p_{T}^{2}}{n_{br}T^{2}}\right)^{-n_{br}}$$

• Hagedorn fit:

$$\frac{dN}{dydp_{\mathrm{T}}} = p_{\mathrm{T}} A \left(\exp\left(-a * p_{\mathrm{T}} - |b|p_{\mathrm{T}}^2\right) + \frac{p_{\mathrm{T}}}{p_0} \right)^{-n}$$

• Tsallis fit:

$$E\frac{d^3\sigma}{dp^3} = \frac{1}{2\pi} \frac{d\sigma}{dy} \frac{(n-1)(n-2)}{(nT)^2} \left(1 + \frac{m_T}{nT}\right)^{-n}$$